首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medical students at Durham University, United Kingdom receive instructions using ultrasound echocardiography . In this issue of ASE Dr. Finn and her colleagues compare the efficacy of ultrasound and cadaveric prosections for teaching gross anatomy of the heart.  相似文献   

2.
Human anatomy knowledge is a core requirement for all health care clinicians. There is a paucity of information relating to anatomy content and delivery in Australian chiropractic programs. The aim of this study was to describe anatomy teaching in Australian chiropractic programs, utilizing a survey which was distributed to all four programs, requesting information on: anatomy program structure, delivery methods, assessment, teaching resources, and academic staff profile at their institution. The survey was undertaken in 2016 and documented practices in that academic year. All four institutions responded. There was a reported difference in the teaching hours, content, delivery and assessment of anatomy utilized in Australian chiropractic programs. Anatomy was compulsory at all four institutions with the mean total of 214 (SD ± 100.2) teaching hours. Teaching was undertaken by permanent ongoing (30%) and sessional academic staff, and student to teacher ratio varied from 15:1 to 12:1. A variety of teaching resources were utilized, including human tissue access, either as prosected cadavers or plastinated body parts. The results of this survey confirm that anatomy has an established place in chiropractic education programs in Australia and while curricular variations exist, all programs had similar course design, delivery, and assessment methods. This study confirmed the provision of a strong foundation in topographical anatomy and neuroanatomy, while other anatomical sciences, such as histology and embryology were not consistently delivered. Formalization of a core anatomy curriculum together with competency standards is needed to assist program evaluation and development, and for accreditation purposes.  相似文献   

3.
Medical students at the Schulich School of Medicine and Dentistry at The University of Western Ontario in London, Ontario, Canada, learn clinical facts about the hepatobiliary system as transplant surgeon Dr. Vivian McAlister (at the far right) demonstrates Whipple's procedure in the anatomy laboratory. In this issue of ASE, Ullah and colleagues describe an extracurricular student initiative known as the Surgically Oriented Anatomy Program (SOAP), which aims to deliver anatomy teaching from a surgical perspective through the philosophy of “education through recreation”.  相似文献   

4.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

5.
A group of first year medical students at the Yong Loo Lin School of Medicine of the National University of Singapore study anatomy in the Anatomy Museum at this institution. Using an anatomical model, students discuss the extraocular muscles with their lecturers Drs. Boon‐Huat Bay (center) and Eng‐Tat Ang (third from left). In this issue of ASE, Dr. Ang and his colleagues review the past, present, and future of anatomy education in Singapore's three medical schools.  相似文献   

6.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

7.
The dissecting competition in progress at the Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand. In this issue of ASE, Drs. Samalia and Stringer describe a dissecting competition for third year medical students. Working alone, students undertake a detailed dissection during a single weekend day and present an appropriately labeled prosection, together with a 300 word abstract emphasizing the clinical relevance of their work. Dissections are judged on presentation, accuracy of labeling, and relevance to the clinical abstract.  相似文献   

8.
Anatomical sciences curricula have been under constant reform over the years, with many countries having to reduce course hours while trying to preserve laboratory time. In Mexico, schools have historically been autonomous and unregulated, and data regarding structure and methods are still lacking. A national survey was sent by the Mexican Society of Anatomy to 110 anatomical sciences educators. The questionnaire consisted of 50 items (open and multiple choice) for gross anatomy, microscopic anatomy, neuroanatomy, and embryology courses in medical schools across Mexico. A clinical approach was the most common course approach in all disciplines. Contact course hours and laboratory hours were higher in Mexican anatomy education compared to other countries, with the highest reported contact hours for embryology (133.4 ± 44.1) and histology (125 ± 33.2). There were similar contact hours to other countries for gross anatomy (228.5 ± 60.5). Neuroanatomy course hours (43.9 ± 13.1) were less than reported by the United States and similar to Saudi Arabia and higher than the United Kingdom. Dissection and microscopy with histological slides predominate as the most common laboratory activities. Traditional methods prevail in most of the courses in Mexico and only a few educators have implemented innovative and technological tools. Implementation of new methods, approaches, and curricular changes are needed to enhance anatomical sciences education in Mexico.  相似文献   

9.
网络课程泛能化设计探讨   总被引:1,自引:0,他引:1  
网络课程的教学设计不同于传统课程的教学设计。为提高网络课程的教学效果,该提出了一种新的设计方法,并着重探讨了网络课程泛能化设计的具体策略。  相似文献   

10.
This study examines the long-term retention of anatomical knowledge from 180 students after various repetition activities. The retention of anatomical knowledge was assessed by multiple-choice tests at five different points in time: before and after a course in Functional Anatomy, before and after repetition activities that occurred 14 weeks after this course, and 28 weeks after this course to establish long-term retention. Students were divided into five groups: one without any repetition activity, one with a restricted repetition activity (the multiple-choice test), and three groups that were offered repetition activities (traditional lecture, e-learning module, and small group work in the dissection room). During all three repetition activities the same information was conveyed, and this content was not revisited in other courses for the duration of the study. The results showed that students who did not engage in a repetition activity scored significantly lower on the long-term retention test compared to all other groups (ANCOVA: P = 0.0001). Pair-wise comparison with estimated means showed that the other four groups, regardless of the type of repeating activity, did not differ in the amount of knowledge they retained during any of the five assessments (P = 0.008, P = 0.0001, P = 0.001, and P = 0.0001, respectively). This study suggests that the type of repetition activity has no effect on knowledge retention both immediately following the activity and in the long term. It is concluded that the repetition of anatomical knowledge in any form is beneficial for students and will likely improve student outcomes in a curriculum that builds on prior knowledge.  相似文献   

11.
While case-based discussions can empower students to apply knowledge to contextual clinical situations, scheduling these activities is a challenge in crowded curricula. Case-based eLearning activities, derived from existing cases discussed within anatomy small group tutorials, were created incorporating principles such as interactivity, reinforcement, and feedback. Over half of the students accessed one or more of these online cases, with 18% accessing all eight online cases provided. Access increased as the semester progressed, particularly just before summative examinations, implying students used these primarily as revision aides. Students rated both formats highly, but favored the online format with regard to enjoyment (P = 0.048), learning (P = 0.101), and feedback (P = 0.086). However, more students discussed these cases in small group tutorials within the anatomy dissecting room than completed them online (122 vs. 67) and themes emerging from free text comments included a desire to have more time dedicated to these cases during small group tutorials, and an appreciation for the opportunity for discussion with staff and learning through doing. Additionally, native English speakers rated the anatomy room discussions significantly higher in all aspects than non-native English speakers, suggesting that non-native speakers may be hesitant or reluctant to fully participate in front of peers. While online case-based learning activities are a useful adjunct to anatomy teaching, particularly for revision, assumptions that “digital natives” have an innate preference for digital resources require critical evaluation, as students still place a high value on opportunities for discussion with staff during their studies.  相似文献   

12.
There are concerns among healthcare practitioners about poor anatomical knowledge among recent healthcare graduates. Universal Design for Learning (UDL) is a framework developed to enhance students' experience of learning and help students to become motivated learners. This scoping review identified whether UDL has been utilized in third level healthcare education and if so, whether it had been used to enhance student motivation to study anatomy. Seven online databases were searched for studies reporting the use of UDL in the curricula of medical, dental, occupational therapy (OT) or speech and language therapy (SLT) programs. Studies were screened for eligibility with set inclusion criteria. Data were extracted and analyzed. Analysis revealed that UDL was not specifically mentioned in any of the studies thus there are no published studies on UDL being formally applied in healthcare education. However, the authors identified 33 publications that described teaching methods which aligned with UDL in anatomy curricula and a thematic analysis yielded four main themes relating to teaching strategies being employed. Universal design for learning was not mentioned specifically, indicating that educators may not be aware of the educational framework, although they appeared to be utilizing aspects of it in their teaching. The review revealed that there is a lack of research concerning the anatomy education of OT and SLT students. The role of UDL in enhancing motivation to learn anatomy in medical, dental, OT and SLT programs has yet to be explored.  相似文献   

13.
Students in undergraduate premedical anatomy courses may experience suboptimal and superficial learning experiences due to large class sizes, passive lecture styles, and difficult-to-master concepts. This study introduces an innovative, hands-on activity for human musculoskeletal system education with the aim of improving students’ level of engagement and knowledge retention. In this study, a collaborative learning intervention using the REFLECT (augmented reality for learning clinical anatomy) system is presented. The system uses the augmented reality magic mirror paradigm to superimpose anatomical visualizations over the user’s body in a large display, creating the impression that she sees the relevant anatomic illustrations inside her own body. The efficacy of this proposed system was evaluated in a large-scale controlled study, using a team-based muscle painting activity among undergraduate premedical students (n = 288) at the Johns Hopkins University. The baseline knowledge and post-intervention knowledge of the students were measured before and after the painting activity according to their assigned groups in the study. The results from knowledge tests and additional collected data demonstrate that the proposed interactive system enhanced learning of the musculoskeletal system with improved knowledge retention (F(10,133) = 3.14, < 0.001), increased time on task (F(1,275) = 5.70, < 0.01), and a high level of engagement (F(9,273) = 8.28, < 0.0001). The proposed REFLECT system will be of benefit as a complementary anatomy learning tool for students.  相似文献   

14.
This study evaluated effect of mental rotation (MR) training on learning outcomes and explored effectiveness of teaching via three-dimensional (3D) software among medical students with diverse spatial intelligence. Data from n = 67 student volunteers were included. A preliminary test was conducted to obtain baseline level of MR competency and was utilized to assign participants to two experimental conditions, i.e., trained group (n = 25) and untrained group (n = 42). Data on the effectiveness of training were collected to measure participants’ speed and accuracy in performing various MR activities. Six weeks later, a large class format (LCF) session was conducted for all students using 3D software. The usefulness of technology-assisted learning at the LCF was evaluated via a pre- and post-test. Students’ feedback regarding MR training and use of 3D software was acquired through questionnaires. MR scores of the trainees improved from 25.9±4.6 points to 28.1±4.4 (P = 0.011) while time taken to complete the tasks reduced from 20.9±3.9 to 12.2±4.4 minutes. Males scored higher than females in all components (P = 0.016). Further, higher pre- and post-test scores were observed in trained (9.0±1.9 and 12.3±1.6) versus untrained group (7.8±1.8; 10.8±1.8). Although mixed-design analysis of variance suggested significant difference in their test scores (P < 0.001), both groups reported similar trend in improvement by means of 3D software (P = 0.54). Ninety-seven percent of students reported technology-assisted learning as an effective means of instruction and found use of 3D software superior to plastic models. Software based on 3D technologies could be adopted as an effective teaching pedagogy to support learning across students with diverse levels of mental rotation abilities.  相似文献   

15.
Drawing session from an art and anatomy workshop for medical students at the University of Texas Health Science Center at San Antonio and art students at the University of Texas at San Antonio. A current trend in medical education is to integrate aspects of the humanities into the medical school curriculum. In this issue of ASE, Dr. Charleen Moore and her colleagues describe an art and anatomy workshop that uses drawing exercises to increase observational skills, to foster the development of humanistic sensitivities, and to emphasize the emotional aspects of dealing with mortality. (Photograph by Penelope Borchers).  相似文献   

16.
Prior to the challenges imposed by the Covid-19 pandemic, anatomy practical sessions at Trinity College Dublin involved eight to 10 students per donor station, rotating between digital learning, anatomical models/osteology, and dissection activities for three hours weekly. To maintain cadaveric participation in the anatomy laboratory while adhering to distancing guidelines, a transition to dyad pedagogy was implemented. This mode of delivery allowed two students per donor station to spend one hour per week in the anatomy laboratory with all digital learning elements transferred to the virtual learning platform Blackboard as pre- and post-practical session learning activities. Dyad pedagogy has been explored in clinical settings and simulation procedural-based training but is yet to be fully verified in anatomy education. To determine the effectiveness of hybrid practical sessions and reduced donor to student ratios, the opinions of first year medical students were examined using an online questionnaire with a 51% response rate. Although students recognized the merits of more time in the anatomy laboratory, including opportunities for self-directed study and exposure to anatomical variation, they felt that having two students per station enabled sufficient hands-on time with the donor body and fostered learning opportunities that would not be possible with larger groups. Strong preferences for quality time with the donor body supported by online resources suggests this modality should be a key consideration in course design for anatomy curricula and emphasizes the importance of gauging students' preferences to optimize satisfaction and learning output when pivoting to blended learning strategies in anatomy education.  相似文献   

17.
课程的开发与实施是影响融合教育有效开展的关键因素之一。作为实施融合教育的先驱国家,美国对融合取向的课程进行了深入的探索,积累了丰富的理论与实践经验。在简述融合教育下美国特殊教育课程演变的历程中,本文重点关注调整课程与通用课程,从概念界定、类型划分、设计原则、效果的影响因素与评价等方面进行分析与总结,并在比较中揭示两者的区别,以找到有助于解决我国特殊教育课程尤其是随班就读课程问题的启发策略。  相似文献   

18.
神经科学是21世纪生命科学中最重要的前沿领域。在高等院校中,通常仅面向医学或生物学专业学生开设神经科学课程,非专业学生很难接触到此类与日常生活、学习和健康息息相关的科学知识。教学实践表明,神经科学的科普教育受到广泛关注,但这种普及教育的模式和方法需要改良和创新。该文对神经科学在高校普及教育探索的经验和成果进行了总结与分析。  相似文献   

19.
Even though peer tutors are often used in gross anatomy courses, research in the field is rather a subject of the last two decades. This is especially true about the didactical challenges these types of peer tutors experience during their tutorials and about how they are prepared for the task. The aim of the presented study was to learn about the training needs of the tutors, and to subsequently design, implement, and evaluate a didactical training concept. A qualitative design was chosen to examine how tutors can best be prepared for tutorials of gross anatomy. To do so, focus group interviews were conducted. The data were analyzed and grouped into various concepts, using semi‐structured interview questions as guidance. It was found that peer tutors are in need of training in the following aspects: Dealing with students who are experiencing difficulties during or as a result of dissection, dealing with group dynamics, that is, at the dissection table, keeping students motivated, time management, and staying confident as a tutor. In order to be regarded as useful and relevant in the eyes of tutors, a preparatory training course should include all these aspects in addition to general didactical training elements. Training needs of peer tutors of gross anatomy go beyond the content of standardized didactical curricula; therefore, tutors should be prepared with a curriculum that is specifically geared toward the many challenges associated with teaching gross anatomy to first year medical students which are already so well documented in the research literature. Anat Sci Educ 10: 495–502. © 2017 American Association of Anatomists.  相似文献   

20.
Medical and healthcare practice is likely to see fundamental changes in the future that will require a different approach to the way in which we educate, train, and assess the next generation of healthcare professionals. The anatomical sciences will need to be part of that challenge so they continue to play a full role in preparing students with the knowledge and ever increasingly the skills and competencies that will contribute to the fundamentals of their future capacity to practice effectively. Although there have been significant advances in anatomical science pedagogy, by reviewing learning and assessment in an apparently unrelated field, provides an opportunity to bring a different perspective and enable appropriate challenge of the current approaches in anatomy. Design learning has had to continually reimagine itself in response to the shifting landscape in design practice and the threats associated with technology and societal change. Design learning has also long used a student-centric active pedagogy and allied authentic assessment methods and, therefore, provides an ideal case study to help inform future changes required in anatomical learning and assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号