首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于Fourier级数理论,求出两个重要级数(∞∑n=1 1/n2±a2)的和.  相似文献   

2.
给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法.  相似文献   

3.
给出了不等式(1/(n+1)+1/(n+2)+…+1/2n)2<1/2的六种不同证法。  相似文献   

4.
利用四维空间中的球:U^2 V^2 W^2 Z^2≤1/2π^2x^2,可以求出这个球内整点数A(x)的渐近公式:A(x)=1/2π^2x^2 O(x^3/2)。另一方面,利用不定方程U^2 V^2 W^2 Z^2=n的解数r(n)的表达式求出A(x)的另一个渐近公式,两个结果比较后得级数∞∑n=1 1/n^2的和为π^2/6。  相似文献   

5.
本文探索求p-级数S(p)=∑n=1^∞ 1/n^p及交错级数J(p)=∑n=1^∞ (-1)^n/(2n-1)^p的和的一般方法和策略,获得一些重要的结论:证明了p-级数与交错级数的和所满足的两个公式,并给出了求p-级数∑n=1^∞ 1/n^p的和的近似公式及误差估计式。  相似文献   

6.
借助函数fk(x)=π/2xk(k为自然数)在(-π,π]上的Fourier级数展开式,本文总结出当p为偶数时p级数∞∑(n=1)1/np和交错级数∞∑(n=1)((-1)n-1)/np的两个求和公式,以及当k为奇数时∞∑(n=1)((-1)n)/((2n+1)k)的求和公式.  相似文献   

7.
本文探索求p-级数S(p)=(sum from n=1 to ∞)(1/n~p)及交错级数J(p)=(sum from n=1 to ∞)((-1)~n/(2n-1)~p)的和的一般方法和策略,获得一些重要的结论:证明了p-级数与交错级数的和所满足的两个公式,并给出了求p-级数(sum from n=1 to ∞)(1/n~p)的和的近似公式及误差估计式。  相似文献   

8.
利用四维空间中的球 :U2 V2 W2 Z2≤ x的体积公式 V=12 π2 x2 ,可以求出这个球内整点数A( x)的渐近公式 :A( x) =12 π2 x2 O( x32 ) .另一方面 ,利用不定方程 U2 V2 W2 Z2 =n的解数 r( n)的表达式求出 A( x)的另一个渐近公式 .两个结果比较后得级数 ∞n =11n2 的和为 π26.  相似文献   

9.
本文应用傅里叶(Fourier)级数的有关理论,得出了∑+∞ n=1 1/n2k类无穷级数和的递推公式.  相似文献   

10.
从f(x)=x在(-ππ)内的傅立叶级数展开式出发,导出形如∑n=1^∞ (-1)^n 1sin nx/n^2k-1及∑n=1^∞ (-1)^n 1con nx/n^2k的三角级数的和函数特点及函数的递推求法,从而解决形如∑n=1^∞ 1/n^2k、∑n=1^∞(-1)^n 1/N^2k、∑n=1^∞ 1/(2n-1)^2k-1(其中k∈N)等级数的求和问题。  相似文献   

11.
本文借助对数判别法,素数定理及函数π(x)的一个不等式完全解决了级数∑n=2[1-α/π(n)]n的敛散性.  相似文献   

12.
本文借助对数判别法 ,素数定理及函数 π( x)的一个不等式完全解决了级数 ∑∞n=2 [1 - απ( n) ]n的敛散性  相似文献   

13.
文章给出了级数∞∑n=11/n2m的一种初等求和方法,此法仅涉及极限与多项式的Newton公式  相似文献   

14.
利用傅里叶级数,得出3个递推公式,解决了p级数∑∞n=11/np与交错级数∑∞n=1(-1)n+1/np ,当p=2k时的收敛值问题.  相似文献   

15.
一方面,通过几个典型例题的解题分析,突出利用泰勒级数展开求解未定式极限问题的特点;另一方面,通过未定式求极限的思想给出nΣk2和∞Σn12求和问题的新方法。  相似文献   

16.
1 在级数审敛中的应用利用指数函数 ex的幂级数展开式 ,即 ex=1+ x+ x22 !+… + xnn!+… ,| x| <+∞ (参见 [1 ] )可以判断某些通项为 n的指数函数的级数的敛散性。例 1 判别级数Σ∞n=1 e-n 的敛散性。解 根据指数函数的幂级数展开式 ,有e n =1+ n + (n ) 22 !+ n323 !+ n24!+…于是 e n >n22 4    (n=1,2 ,…… )故 e-n <2 4n2     (=1,2 ,…… )从而据正项级数比较判别法知 ,Σ∞n=1 e-n收敛例 2 判别级数 Σ∞n=1 (n1n2 + 1 -1)的敛散性。解 :因为an =n 1n2 + 1 -1=elnnn2 + 1 -1由于     limn→∞anlnnn2 + 1=limn→∞el…  相似文献   

17.
对欧拉常数γ=lim/n→∞[(1+1/2+…+1/n)-1n n]的性质作了简单推广,并给出了欧拉常数,在解题中的若干应用问题。  相似文献   

18.
级数∞∑i=1(-1)^n+1 1/n收敛于1n2,再由公式Hn=1nn+C=εn,得出该级数按一定规律重排后的级数的收敛值。  相似文献   

19.
本文考虑一阶非线性齐次微分方程 (Riccati方程 ) dydx =a (x ) y +b (x ) y2 ,设a(x) =∑∞n =0anxn,b(x) =∑∞n =0bnxn 且满足an =O(1n2 ) ,bn =O(1n) ,( n) ,则Riccati方程必有满足初值条件 y(0 ) =y0 ,y′(0 ) =y1的解析解 y(x) =∑∞n =0cnxn,其中cn =O(1n2 ) ,在|x| <1上收敛。本文所用的方法是强级数方法。  相似文献   

20.
本文给出任意项级数收敛判定方法:如果级数∑_(n=1) a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)∞ a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)sinπ/2(a_0n∞sinπ/2(a_0nk+a_1nk+a_1n(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)sinπ/2n∞sinπ/2n(2s+1)/n收敛,级数∑_(n=1)(2s+1)/n收敛,级数∑_(n=1)sinπ/2n∞sinπ/2n(2s)/n发散,其中s∈N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号