首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 671 毫秒
1.
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.  相似文献   

2.
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation effi- ciency in application using MATLAB software.  相似文献   

3.
The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads.The finite element model of a large-scale prestres...  相似文献   

4.
The intact stability and damage stability of a model of an anemometer tower with buoyancy tank foundation are computed by the finite element software MOSES in this paper. The natural period of the anemometer tower is discussed through frequency domain analysis. The influence of a single factor, such as towing point position, wave height, wave direction and wave period, on towing stability is discussed through time domain analysis. At the same time, the towing stability under the condition of various combinations of many factors is analyzed based on the meas- ured data of the target area. Computer simulation results show that the intact stability is preferable and the damage stability is sufficient under the condition of plenty of subdivisions. Within the scope of the buoyancy tank foundation, the higher the towing point position is, the better the stability is. Wave height has a great impact on the motion amplitude of buoyancy tank foundation, but the effect on the acceleration is not obvious; wave period has a great impact on the acceleration, while the effect on the motion amplitude is not obvious; following-waves towing is more conducive to safety than atry.  相似文献   

5.
In this paper, the influential design factors of wide-shallow composite bucket foundation for 3 MW offshore wind turbine are systematically studied by numerical simulation. The results show that the bucket diameter is larger than 27 m in general, and the range of 7—12 m is appropriate for cylinder height. In particular, the bucket foundation with diameter of 30 m and cylinder height of 10 m is suitable for most soils. Under ultimate loads, the bucket diameter and elasticity modulus of soil have major effects on the deformability of bucket foundation, while the influence of friction coefficient between the bucket and soil is relatively slight.  相似文献   

6.
The head-on collision process between ship and concrete pile supported protective system is simulated by software LS-DYNA. The influences of pile non-linearity and soil non-linearity on impact force, ship crush depth and the cap displacement of pile supported protective system are discussed. It's shown that for both severe impact case and non-severe impact case, the non-linearity of pile material influence the impact force history, ship crush depth. The non-linearity of pile material and soil has remarkable influence on the cap displacement especially for severe impact case. These issues should not be ignored in the analysis of pile supported protective system subjected to ship impact.  相似文献   

7.
The head-on collision process between ship and concrete pile supported protective system is simulated by software LS-DYNA. The influences of pile non-linearity and soil non-linearity on impact force, ship crush depth and the cap displacement of pile supported protective system are discussed. It's shown that for both severe impact case and non-severe impact case, the non-linearity of pile material influence the impact force history, ship crush depth. The non-linearity of pile material and soil has remarkable influence on the cap displacement especially for severe impact case. These issues should not be ignored in the analysis of pile supported protective system subjected to ship impact.  相似文献   

8.
Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.  相似文献   

9.
The large-scale bucket foundation with 30 m in diameter and 6 m in height was used as the foundation of wind turbine.The wide-shallow foundation is different from the traditional bucket foundation with...  相似文献   

10.
This paper deals with the problem of the instability regions of a free-free flexible jointed bipartite beam under the follower and transversal forces as a realistic simulation of a two-stage aerospace structure. The aim of this study is to analyze the effects of the characteristics of a flexible joint on the beam instability to use maximum bearable propulsion force. A parametric study is conducted to investigate the effects of the stiffness and the location of the joint on the critical follower force by the Ritz method and the Newmark method, then to research the vibrational properties of the structure. It has been shown that the nature of instability is quite unpredictable and dependent on the stiffness and the location of the joint. The increase of the follower force or the transversal force will increase the vibration of the model and consequently cause a destructive phenomenon in the control system of the aerospace structure. Furthermore, this paper introduces a new concept of the parametric approach to analyze the characteristics effects of a flexible two-stage aerospace structure joint design.  相似文献   

11.
The composite bucket foundation(CBF) is a new kind of foundation which has been applied in the offshore wind industry. A reasonable connection pattern between the tower and the CBF top cover is crucial for load transmissions from the superstructure. Therefore, it is essential to choose an optimum structure type for the transition section. The line type and the arc transition section models were established by ABAQUS, and the internal forces of cross section were extracted along the height direction. Specifically, the force transfer mechanism for different types of the transition sections was investigated comparatively with monotonic as well as composite loadings. The results show that the curved transition structure exhibits the better mechanical characteristics under the monotonic and composite loadings, and the reason can be illustrated that its specific arc-shape structure can effectively convert the tremendous bending moment from the turbine tower into the limited tensile and compressive stresses downwards, without the occurrence of force concentration.  相似文献   

12.
An integrated finite element model(FEM)of offshore wind tower-foundation-soil is established by ABAQUS, where a large-scale composite bucket foundation with seven compartments inside is applied to supporting the upper wind tower. The dynamic response of the structure-foundation system is studied under three seismic waves with the same peak ground acceleration of 0.035g. It can be seen that the dynamic response increases at the beginning with the structure height, then it decreases because the structural damping increases due to the mass effect of the upper wind turbine generator system. It is shown that the anti-liquefaction capacity of the soil inside and underneath the foundation is improved owing to the high overburden pressure of the upper structure and the constraint effect of the bucket skirt and subdivisions. Moreover, the liquefaction resistance of the soil inside the middle compartment is improved to a higher degree than that inside the side compartments.  相似文献   

13.
A series of model experiments of bucket foundations concerning suction installation and negative pressure consolidation in saturated silt were carried out in a cube steel bin at Tianjin University. The experimental results show that the silt inside the bucket has been strengthened by negative pressure, and the strengthening effect decreases with the increase of the distance from the bucket. A three-dimensional numerical model of the experiments was built by means of finite element software ABAQUS with fluid-solid coupling method. The results show that the bearing capacity of the silt inside the bucket foundation increases significantly at the former stage of negative pressure consolidation, while the increasing trend slows down over time. The rotation centers of the bucket foundation and the inner soil region tend to be closer to each other based on the consolidation. The bearing capacity of the bucket foundation is improved effectively with the increase of soil strength. The effects of negative pressure consolidation on the bearing capacity of bucket foundation were also illustrated by an actual offshore wind power project case.  相似文献   

14.
针对固定辙叉特殊的轨线布置及复杂的轮轨接触关系,建立固定辙叉区轮轨接触几何关系算法,分析固定辙叉区沿辙叉走行方向主要接触参数的变化规律以及各关键断面轮轨接触点变化情况。结果表明:在辙叉轮载过渡段轮轨接触参数变化规律复杂,结构不平顺变化幅值最大且波长较短;轮对横移量增加,轮轨接触几何参数增大,轮轨动力作用增强;辙叉咽喉区和轮载过渡段辙叉侧轮轨接触点变化存在突变。提出应合理设计辙叉区轮载过渡段结构参数,优化轮轨接触几何关系,进而改善列车通过时辙叉的受力性能。  相似文献   

15.
针对非通航孔桥墩结构单薄,抵抗船舶撞击能力小的现状,本文提出了一种桥墩前新型拦截消能装置.该装置在船撞力作用下,利用"跷跷板"原理,使水平铺置的拦截网旋转成竖立工作状态,能增加阻拦住失控船舶的机率,大大减少了拦截系统被船舶直接压过驶走的概率.后经计算和综合分析效果良好,其成果可为非通航孔防撞设计借鉴参考.  相似文献   

16.
采用强度折减有限元法,分析软黏土地基中坑中坑式基坑的内坑开挖对外坑抗隆起稳定性的影响。随着基坑开挖,塑性应变区出现在外坑墙脚和内坑坑底,逐渐扩张至贯通,在内坑距离外坑挡墙较近的一侧形成近似圆弧状的剪切破坏面。坑外土沿着破坏面发生塑性流动,最终导致隆起破坏。研究内外坑的间距和内坑的尺寸对坑中坑式基坑的抗隆起稳定性的影响,发现增大内外坑的间距,内坑的深度以及内坑的宽度会改变破坏面的形式以及坑中坑式基坑的抗隆起稳定安全系数的大小。归纳得出在3种参数影响下总共存在3种不同的破坏面形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号