首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass NR  Tjeung R  Chan P  Yeo LY  Friend JR 《Biomicrofluidics》2011,5(3):36501-365017
Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Silanization, the generic term applied to the formation of organosilane monolayers on substrates, is both widely reported in the literature and troublesome in actual application for the uninitiated. These monolayers can be subsequently modified to produce a surface of a specific functionality. Here various organosilane deposition protocols and some application notes are provided as a basis for the novice reader to construct their own silanization procedures, and as a practical resource to a broader range of techniques even for the experienced user.  相似文献   

2.
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer   总被引:1,自引:0,他引:1  
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.  相似文献   

3.
We propose a blood separation microfluidic device suitable for point-of-care (POC) applications. By utilizing the high gas permeability of polydimethylsiloxane (PDMS) and phaseguide structures, a simple blood separation device is presented. The device consists of two main parts. A separation chamber with the phaseguide structures, where a sample inlet, a tape-sealed outlet, and a dead-end ring channel are connected, and pneumatic chambers, in which manually operating syringes are plugged. The separation chamber and pneumatic chambers are isolated by a thin PDMS wall. By manually pulling out the plunger of the syringe, a negative pressure is instantaneously generated inside the pneumatic chamber. Due to the gas diffusion from the separation chamber to the neighboring pneumatic chamber through the thin permeable PDMS wall, low pressure can be generated, and then the whole blood at the sample inlets starts to be drawn into the separation chamber and separated through the phaseguide structures. Reversely, after removing the tape at the outlet and manually pushing in the plunger of the syringe, a positive pressure will be created which will cause the air to diffuse back into the ring channel, and therefore allow the separated plasma to be recovered at the outlet on demand. In this paper, we focused on the study of the plasma separation and associated design parameters, such as the PDMS wall thickness, the air permeable overlap area between the separation and pneumatic chambers, and the geometry of the phaseguides. The device required only 2 μl of whole blood but yielding approximately 0.38 μl of separated plasma within 12 min. Without any of the requirements of sophisticated equipment or dilution techniques, we can not only separate the plasma from the whole blood for on-chip analysis but also can push out only the separated plasma to the outlet for off-chip analysis.  相似文献   

4.
In vitro assays of platelet function and coagulation are typically performed in the presence of an anticoagulant. The divalent cation chelator sodium citrate is among the most common because its effect on coagulation is reversible upon reintroduction of divalent cations. Adding divalent cations into citrated blood by batch mixing leads to platelet activation and initiation of coagulation after several minutes, thus limiting the time blood can be used before spontaneously clotting. In this work, we describe a herringbone microfluidic mixer to continuously introduce divalent cations into citrated blood. The mixing ratio, defined as the ratio of the volumetric flow rates of citrated blood and recalcification buffer, can be adjusted by changing the relative inlet pressures of these two solutions. This feature is useful in whole blood assays in order to account for differences in hematocrit, and thus viscosity. The recalcification process in the herringbone mixer does not activate platelets. The advantage of this continuous mixing approach is demonstrated in microfluidic vascular injury model in which platelets and fibrin accumulate on a collagen-tissue factor surface under flow. Continuous recalcification with the herringbone mixer allowed for flow assay times of up to 30 min, more than three times longer than the time achieved by batch recalcification. This continuous mixer allows for measurements of thrombus formation, remodeling, and fibrinolysis in vitro over time scales that are relevant to these physiological processes.  相似文献   

5.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

6.
Microarray devices are powerful for detecting and analyzing biological targets. However, the potential of these devices may not be fully realized due to the lack of optimization of their design and implementation. In this work, we consider a microsphere-trap array device by employing microfluidic techniques and a hydrodynamic trapping mechanism. We design a novel geometric structure of the trap array in the device, and develop a comprehensive and robust framework to optimize the values of the geometric parameters to maximize the microsphere arrays'' packing density. We also simultaneously optimize multiple criteria, such as efficiently immobilizing a single microsphere in each trap, effectively eliminating fluidic errors such as channel clogging and multiple microspheres in a single trap, minimizing errors in subsequent imaging experiments, and easily recovering targets. We use finite element simulations to validate the trapping mechanism of the device, and to study the effects of the optimization geometric parameters. We further perform microsphere-trapping experiments using the optimized device and a device with randomly selected geometric parameters, which we denote as the un-optimized device. These experiments demonstrate easy control of the transportation and manipulation of the microspheres in the optimized device. They also show that the optimized device greatly outperforms the un-optimized device by increasing the packing density by a factor of two, improving the microsphere trapping efficiency from 58% to 99%, and reducing fluidic errors from 48% to a negligible level (less than 1%). The optimization framework lays the foundation for the future goal of developing a modular, reliable, efficient, and inexpensive lab-on-a-chip system.  相似文献   

7.
Developing carriers of active ingredients with pre-determined release kinetics is a main challenge in the field of controlled release. In this work, we fabricate designer microparticles as carriers of active ingredients using droplet microfluidics. We show that monodisperse droplet templates do not necessarily produce monodisperse particles. Magnetic stirring, which is often used to enhance the droplet solidification rate, can promote breakup of the resultant microparticles into fragments; with an increase in the stirring time, microparticles become smaller in average size and more irregular in shape. Thus, the droplet solidification conditions affect the size, size distribution and morphology of the fabricated particles, and these attributes of the microparticles strongly influence their release kinetics. The smaller the average size of the microparticles is, the higher the initial release rate is. The release kinetics of drug carriers is strongly related to their characteristics. The understanding of this relationship enables the fabrication of tailor-designed carriers with a specified release rate, and even programmed release to meet the needs of applications that require a complex release profile of the active ingredients.  相似文献   

8.
9.
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.  相似文献   

10.
Li G  Luo Y  Chen Q  Liao L  Zhao J 《Biomicrofluidics》2012,6(1):14118-1411816
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

11.
A simple method for micromanipulation of liquids and∕or small groups of cells is presented in this study. Microfabricated sieving structures composed of PDMS (polydimethylsiloxane) were used to segregate aqueous solutions. This microfluidic valving scheme was an application of Cassie-Baxter wetting and was termed "virtual walls" as a nonsolid barrier exists at an air∕water interface. The manipulation of the virtual-air-wall valve was accomplished by controlling the strength of surface-tension and hydrostatic-pressure forces. Virtual walls with a range of feature sizes were designed and characterized by monitoring air and water displacement in response to hydrostatic pressure. Thresholds for the virtual-air-wall valves to be turned on or off were quantified. The walls could also be formed or dissipated by the focused microbeam of a pulsed laser. As an illustration of the virtual wall utility, a series of microfluidic applications were demonstrated. First, the capability of virtual walls to temporarily segregate liquids was integrated into a device utilized to establish a chemical gradient. In a second application, the arraying of nonadherent cells within individual aqueous cavities created by the virtual walls was demonstrated. Individual cells were also released from the cavities on demand using a focused microbeam. The virtual walls were simple and easy-to-fabricate without the requirement for surface treatment or precision alignment, and should find usage in bioanalytical applications.  相似文献   

12.
This paper presents a simple-to-construct, low dead volume pump capable of generating a wide range of positive and negative pressures for microfluidic applications. The pump generates pressure or vacuum by changing the volume of air confined inside a syringe and is able to generate pressures between -95 and +300 kPa with a resolution as high as 1 Pa. Different from syringe pumps and electrokinetic pumping, which are capable of controlling flow rates only, our pump can be used to generate constant flow rates or constant pressures, which are required for certain applications such as the aspiration of biological cells for biophysical characterization. Compared to syringe pumps, the new pump has almost zero dead volume and does not exhibit pulsatile flows. Additionally, the system does not require electrical power and is cost effective (~$100). To demonstrate the capabilities of the pump, we used it to aspirate osteoblasts (MC3T3-E1 cells) and to determine Young's modulus of the cells, to generate a concentration gradient, and to produce variable-sized droplets in microchannels using hydrodynamic focusing.  相似文献   

13.
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.  相似文献   

14.
Jena RK  Yue CY 《Biomicrofluidics》2012,6(1):12822-1282212
This report studies the surface modification of cyclic olefin copolymer (COC) by 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer using photografting technique for the purpose of biointerface applications, which demonstrate resistance to both protein adsorption and cell adhesion in COC-based microfluidic devices. This is essential because the hydrophobic nature of COC can lead to adsorption of specific compounds from biological fluids in the microchannel, which can affect the results during fluidic analysis and cause clogging inside the microchannel. A correlation was found between the irradiation time and hydrophobicity of the modified substrate. Static water contact angle results show that the hydrophilicity property of the MPC-grafted substrate improves with increasing irradiation time. The contact angle of the modified surface decreased to 20 ± 5° from 88 ± 3° for the untreated substrate. The surface characterization of the modified surface was evaluated using x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR spectroscopy). Attenuated total reflection-FTIR and XPS results show the presence of the phosphate group (P-O) on modified COC substrates, indicating that the hydrophilic MPC monomer has successfully grafted on COC. Finally, it was demonstrated that cell adhesion and protein adsorption on the MPC modified COC specimen has reduced significantly.  相似文献   

15.
Microfluidic organs-on-chips (OoCs) technology has emerged as the trend for in vitro functional modeling of organs in recent years. Simplifying the complexities of the human organs under controlled perfusion of required fluids paves the way for accurate prediction of human organ functionalities and their response to interventions like exposure to drugs. However, in the state-of-the-art OoC, the existing methods to control fluids use external bulky peripheral components and systems much larger than the chips used in experiments. A new generation of compact microfluidic flow control systems is needed to overcome this challenge. This study first presents a structured classification of OoC devices according to their types and microfluidic complexities. Next, we suggest three fundamental fluid flow control mechanisms and define component configurations for different levels of OoC complexity for each respective mechanism. Finally, we propose an architecture integrating modular microfluidic flow control components and OoC devices on a single platform. We emphasize the need for miniaturization of flow control components to achieve portability, minimize sample usage, minimize dead volume, improve the flowing time of fluids to the OoC cell chamber, and enable long-duration experiments.  相似文献   

16.
Thermotaxis has been demonstrated to be an important criterion for sperm evaluation, yet clinical assessment of thermotaxis capacity is currently lacking. In this article, the on-chip thermotaxis evaluation of human sperm is presented for the first time using an interfacial valve-facilitated microfluidic device. The temperature gradient was established and accurately controlled by an external temperature gradient control system. The temperature gradient responsive sperm population was enriched into one of the branch channels with higher temperature setting and the non-responsive ones were evenly distributed into the two branch channels. We employed air-liquid interfacial valves to ensure stable isolation of the two branches, facilitating convenient manipulation of the entrapped sperm. With this device, thermotactic responses were observed in 5.7%-10.6% of the motile sperm moving through four temperature ranges (34.0-35.3 °C, 35.0-36.3 °C, 36.0-37.3 °C, and 37.0-38.3 °C, respectively). In conclusion, we have developed a new method for high throughput clinical evaluation of sperm thermotaxis and this method may allow other researchers to derive better IVF procedure.  相似文献   

17.
The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes.  相似文献   

18.
Microfluidic impact printing has been recently introduced, utilizing its nature of simple device architecture, low cost, non-contamination, and scalable multiplexability and high throughput. In this paper, we have introduced an impact-based droplet printing platform utilizing a simple plug-and-play microfluidic cartridge driven by piezoelectric actuators. Such a customizable printing system allows for ultrafine control of droplet volume from picoliters (∼23 pl) to nanoliters (∼10 nl), a 500 fold variation. The high flexibility of droplet generation can be simply achieved by controlling the magnitude of actuation (e.g., driving voltage) and the waveform shape of actuation pulses, in addition to nozzle size restrictions. Detailed printing characterizations on these parameters have been conducted consecutively. A multiplexed impact printing system has been prototyped and demonstrated to provide the functions of single-droplet jetting and droplet multiplexing as well as concentration gradient generation. Moreover, a generic biological assay has also been tested and validated on this printing platform. Therefore, the microfluidic droplet printing system could be of potential value to establish multiplexed micro reactors for high-throughput life science applications.  相似文献   

19.
In this work we report a microfluidic platform capable of trapping and concentrating a trace amount of DNA molecules efficiently. Our strategy invokes nonlinear electro-osmotic flow induced by charge polarization under high-frequency ac fields. With the asymmetric quadrupole electrode design, a unique converging flow structure can be created for generating focusing effects on DNA molecules. This focusing in turn transforms into a robust funnel that can collect DNA molecules distantly from the bulk and pack them into a compact cone with the aid of short-range dipole-induced self-attraction and dielectrophoresis. Our results reveal that not only can DNA molecules be concentrated within just a few seconds, but also they can be focused into threads of 1 mm in length, demonstrating the superfast and long-range trapping capability of this funnel. In addition, pico M DNA solutions can be concentrated with several decades of enhancement without any continuous feeding. Alternating concentration and release of DNA molecules is also illustrated, which has potentials in concentrating and transporting biomolecules in a continuous fashion using microdevices.  相似文献   

20.
Studies on the effects of variations in temperature and mild temperature gradients on cells, gels, and scaffolds are important from the viewpoint of biological function. Small differences in temperature are known to elicit significant variations in cell behavior and individual protein reactivity. For the study of thermal effects and gradients in vitro, it is important to develop microfluidic platforms which are capable of controlling temperature gradients in an environment which mimics the range of physiological conditions. In the present paper, such a microfluidic thermal gradient system (μTGS) system is proposed which can create and maintain a thermal gradient throughout a cell-seeded gel matrix using the hot and cold water supply integrated in the system in the form of a countercurrent heat exchanger. It is found that a uniform temperature gradient can be created and maintained in the device even inside a high temperature and high humidity environment of an incubator. With the help of a hot and cold circuit controlled from outside the incubator the temperature gradient can be regulated. A numerical simulation of the device demonstrates the thermal feature of the chip. Cell viability and activity under a thermal gradient are examined by placing human breast cancer cells in the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号