首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
asinx+bcosx=(a~2+b~2)~(1/2)sin(x+φ)这个重要的等式,在结构上左边是两函数的和,右边只是一个函数,即是一个函数表示两个函数的和。本文就是根据这些结构特点。结合|sin(x+φ)|≤1的性质列举出诸方面的应用。例1  相似文献   

2.
大家知道,三角式asinx+bcosx=√a2+b2sin(x+ψ),其中tanψ=b/a,而|sin(x+ψ)|≤1,由此可知三角方程asinx+bcosx=c有解的充要条件是a2+b2≥c2,对于这个充要条件中等号何时成立,我们可做如下推导: ∵ a2+b2-c2=a2+b2-(asinx+bcosx)2=a2+b2-a2sin2x-2ab·sinxcosx-b2cos2x=a2(1-sin2x)-2absinxcosx+b2(1-cos2x)=b2sin2x-2absinxcosx+a2cos2x=(acosx-bsinx)2.∴当且仅当bsinx=acosx时a2+b2=c2成立.  相似文献   

3.
一、方程f(x)~(1/2)+g(x)~(1/2)=k(k>0)表明,(f(x)~(1/4),g(x)~(1/4)为圆f(x)~(1/2)=k~(1/2)(cost)g(x)~(1/4)=k~(1/2)(sint)与倾角为t之径线的交点坐标,因而可设 f(x)=k~2cos~4t g(x)=k~2sin~4t’通过三角变换直接或间接地解得x。例1.解方程 2x-1~(1/2)+x+3~(1/2)=4 解:设 2x-1=16cos~4t x+3=16sin~4t(1/2相似文献   

4.
错在哪里?     
一、(山东莱芜六中宋尊良来稿题:已知:|a|≤1,|b|≤1 求证:ab+((1-a~2)(1-b~2))~(1/2)=≤1 证明:∵|a≤1,|b|≤1, 不妨设sinα=a,cosα=b, 则有:ab+((1-a~2)(1-b~2))~(1/2)=sinα·cosα+((1-sin~2α)(1-cos~2α))~(1/2)=(1/2)sin2α+(sin~2α·cos~2α)~(1/2)=(1/2)sin2α+(1/2)|sin2α|≤(1/2)|sin2α|+(1/2)|sin2α|=|sin2α|≤1  相似文献   

5.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

6.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

7.
平方关系是三角函数之间的一种基本关系,恰当运用千方关系,不仅能简化问题,而且还能加强数学各部分知识之间的相互渗透,本文略举数例说明其应用。 例1 已知a>b>c,求证1/(a-b) 1/(b-c) 4/(c-a)≥0。 证 由已知a>b>c得a-b>0,b-c>0,a-c>0,又因(a-b) (b-C)=a-C令:a-b=(a-C)cos~2d b-C=(a-c)sin~2d(其中0<口<π/2)。原不等式等价于1/((a-c)cos~2θ) 1/((a-c)sin~2θ)-4/(a-c)≥0即:1/(a-c)[(1 tg~2θ) (1 ctg~2θ)-4]≥0。 显然,不等式1/(a-c)(tgθ-ctgθ)~2≥0成立。故原不等式成立。 例2 已知f(x)=ax b,且2a~2 6b~2=3,证明:对任意实数x∈[-1,1],都有|f(x)|≤2~(1/2)。 证 由已知2a~2 6b~2=3,得(((2/3)a)~(1/2))~2  相似文献   

8.
方程ax~2 bx c=0的判别式△=b~2-4ac及运用判别式求解一类范围题早被人们熟知。在三角方程asinx bcosx=c中,高中代数第二册P.31给出了它的有解条件|c/(a~2 b~2)~(1/2)|≤1。我们容易从有解条件中得到a~2 b~2-c~2≥0,仿一元二次方程,我们引出符号△=a~2 b~2-c~2,并把它称为三角方程asinx bcosx=c的判别式。容易证明:方程asinx bcosx=c,x∈[0,2π),当 i)△>0时,有两不等实根;ii)△=0时,有唯一实根;iii)△<0时,无实根。 u=cosx, 略证如下{ x∈[0,2π) v=sinx,  相似文献   

9.
讲解例题,主要是教给学生解题的方法。在教学中应注意不断改进解法,以提高学生的解题能力。下面举三例以说明之。例一:已知sinα=asinβ……① tgα=btgβ……②求证:cosα=(a~2-1/b~2-1)~(1/2) 分析(1)从求证等式右边着手,只要从已知条件求出a,b代入右边即可。证法(一):分别由(1),(2)得a=sinα/sinβ分析(2)从求证等式没有β的三角函数着手,只要从(1),(2)消去β即可,这可由sin~2β+cos~2β=1办到  相似文献   

10.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

11.
题目已知sinαcosβ=-1/2,求cosαsinβ的取值范围.引申1已知sinαcosβ=α,cosαsinβ=b,则|a|+|b|≤1,当且仅当sin~2α+sin~2β=1时等号成立.证明|a|+|b| =|sinα||cosβ|+|cosα||sinβ|≤(sin~2α+cos~2β)/2+(cos~2α+sin~2β)/2=1,  相似文献   

12.
例.已知0相似文献   

13.
在六年制重点中学高中数学课本代数第一册上有这样一道例题,化asinα bcosα为一个角的三角函数形式,课本上最后解答是这样的: asinα bcosα=(a~2 b~2)~(1/2)sin(α φ)……(A)(其中φ角所在象限由a,b符号确定,φ角的值由tgφ=b/a确定) 因为角φ通常称为辅助角,故本文中把公式(A)称为辅助角公式,此公式在求值,证恒等式,不等式,求极值等方面均有十分广泛的应用,现举例如下。 [例一] 已知:a、b不同时为零,且 asinx bcosx=0 … (1) Asin2x Bcos2x=c … (2) 求证:2abA (b~2-a~2)B (a~2 b~2)c=0 证明:将(1)式变形为 (a~2 b~2)~(1/2)sin(x φ)=0 … (3) ∵ a,b不同时为零,由(3)得 sin(x φ)=0  相似文献   

14.
1986年献礼     
1.若(a b)/(a-b)=(b c)/(b-c)=(c a)/(c-a) 求证:|a~(1986)|=|b~(1986)|=|c~(1986)| 【证明】:由条件(*)知a、b、c两两不等,且abc≠0,对(*)式用合分比定理得a/b=b/c=c/a=x≠1从而c=ax,b=cx=ax~2,a=bx=ax~3 ∴ x~3=1,可见x是1的立方虚根w或w~2。∴ c=aw,b=xw~2或c=aw~2,b=aw~4=aw, 于是|a~(1986)|=|(aw~2)~(1986)|=|(aw)~(1986)| 故|a~(1986)|=|b~(1986)|=|c~(1986)| 2.证明:是合数【证明】:=10~(1986)-1/9=(10~(993))~2-1/9=((10~(993) 1)(10~(993)-1))/9  相似文献   

15.
几乎所有的数学复习资料和习题集中,都有这样一类习题:“对于任意实数a,…”,“若…对于任意实代入上式得f(-x)=f(x). 故f(x)为奇函数. 例7.设a、b、A、B∈R,且 f(θ)=1-asinθ-bcosβ-Asin2θ-Bcos2θ, 若对于所有的实数θ恒有f(θ)≥0,求证: A~3+B~2≤1,a~2+b~2≤2. 证明,引入辅助角α、β,使得a/r=cosα,b/r=sina,A/R=cosβ,B/R=sinτ,其中r=(a~2+b~2)~(1/2),R=(A~2+B~2)~(1/2).则由f(θ)≥0得1-rsin(θ+α)-Rsin(2θ+β)≥0.(1) 由于(1)式对任何实数θ都成立,则对于π+θ也成立.即1-rsin(π+θ+α)-Rsin(2x+2θ+β)≥0. 即1+rsin(θ+α)-Rsin(2θ+β)≥0.(2) (1)+(2)得2-2Rsin(2θ+β)≥0.(3) 由于(3)式对任何实数日亦成立,则对于2θ+β=π/2也成立,即2—2R≥0. ∴ R≤1,即(A~2+B~2)≤1,故A~+B~2≤1. 用同样的方法可证a~2+b~2≤2(略). 四、求导法如果关于任意变量的解析式恒等于一个常数,就可以对这个恒等式两边求导,然后利用零解析式的特性求其他的条件变量. 例8.sin~2θ+sin~2(θ+α)+sin~2(θ+β)=3/2对任意的实数θ都成立,求α、β的值(0≤α<β≤π). 解:题设等式两边对口求导得 sin2θ+sin[2(θ+α)]+sin[2(θ+β)]≡0, 即(1+cos2α+cos2β)sin2θ+(sin2α+sin2β)cos2θ≡0, 由此得解得α=π/3,β=(2π)/3。  相似文献   

16.
题目 1.求cos~210° cos~250°-sin40°·sin80°的值。(1991全国高中联赛) 2.求sin~220° cos~280° 3~(1/2)sin20°·cos80°的值。(1992全国高考题) 3.求sin~220° cos~250° sin20°·cos50°的值。(1995全国高考题) 4.求sin~222° sin~223° 2~(1/2)sin22°·sin23°的值。(自拟题)  相似文献   

17.
引入变量,将一些原本不是求解方程的问题转化为解方程,从而使原问题获解的方法,称为“方程法”。可应用在一些三角等式的证明中。 [例1] 已知cos~4α/cos~2β+sin~4α/sin~2β=1,求证:cos~8α/cos~6β+sin~8α/sin~6β=1。证:令cos~2α=x,sin~2α=y,则有,用代入消元方法可得到,x~2-2xcos~2β+cos~4β=0,即(x-cos~2β)~2=0, ∴x=cos~2β,y=sin~2β,即cos~2α=cos~2β,sin~2α=sin~2β。  相似文献   

18.
[题] 从椭圆x~2/a~2+y~2/b~2=1的中心作三条两两互成2π/3角的半径r_1,r_2,r3,求证:1/r_1~2+1/r_2~2+1/r_3~2定值。证:将椭圆方程化为极坐标方程得ρ~(2)cos~(2)θ/a~(2)+ρ~(2)sin~(2)θ/b~(2)=1→1/ρ~(2)  相似文献   

19.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

20.
在平面三角中有与代数中的平方差公式a~2-b~2=(a+b)(a-b)形似的恒等式: sin~2α-sin~2β=cos~2β-cos~2α=sin(α+β)·sin(α-β),(1)与 cos~2α-sin~2β=cos~2β-sin~2α=cos(α+β)·cos(α-β)。(2) 这两组恒等式不妨叫做三角中的“平方差”公式。熟记这两组恒等式对于解答某些三角问题、几何问题或综合题会有所帮助。恒等式(1)证明如下: ∵sin~2α-sin~2β=1/2(1-cos2α)-1/2(1-cos2β)=1/2(cos2β-cos2α)=sin(α+β)sin(α-β),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号