首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper is based on interviews with seventy-five science teachers in twelve schools across Australia. The interviews were conducted as part of a D.E.E.T. Project of National Significance. The purpose of the project was to develop a strategy for the professional development of science teachers. The main purpose of our interviews was to listen to teachers' views on what such a strategy should try to achieve. We asked them to talk about conditions affecting the quality of their work, their attitudes to teaching, their professional development, their careers, the evaluation of teaching, and Award Restructuring. Through these interviews we came to understand how many science teachers are loosely connected with potentially valuable sources of support for their professional development. In this paper we focus on one group of “loose connections”; those between science teachers and scientists in other fields, research in science education, and their colleagues within science departments in schools. Specializations: Science education, reflective practice, teaching and learning. Specializations: Professional development, educational evaluation.  相似文献   

2.
This study examines the differences between teachers' and students' perceptions of textbook usage in the science classroom. Four categories of use were identified: teacher directed student activities; teaching/studying guidance; as a source of information for the user and as preparation for assessment. The results of the study show that differences do occur between teachers and students with respect to their perceptions of the extent to which textbooks are used in the classroom and the purposes for which they are used, namely as a teaching/studying guide and as preparation for assessment. The findings of the study should be important to all those who use, write and publish high school science textbooks. Specializations: science education.  相似文献   

3.
This study involved collaborative classroom-based observation of student communication and cognition in small groups after the implementation of two management strategies in science departments in several schools. The paper presents the data and provides insights into the conduct of research and teacher development in the midst of educational change. Specialization: science teacher education. Specializations: studies in twentieth century science education in Australia, student learning in classroom groups, teachers' working knowledge.  相似文献   

4.
Teacher-conducted assessments of practical skills are a compulsory component of GCSE examinations in science in England and Wales. The paper presents some of the findings of a research project that investigated this aspect of a science teacher's work. The project was concerned principally with the ways in which science teachers interpreted and operationalised the policy decision of central government and examination boards that teachers assume responsibility for the internal assessment of the practical competence of pupils aged 14–16 preparing for GCSE examinations in science. Specializations: the social history and politics of school science education  相似文献   

5.
As there is nothing as practical as a good theory, there is a continuing need in the field of science education enquiry to look for theories which help to interpret the findings about students' alternative frameworks and to inform the design of teaching strategies which relate to a research focus on ‘how the student learns’. The developmental model of cognitive functioning based on the SOLO Taxonomy (Biggs & Collis, 1982) as updated in 1991 (Biggs & Collis, 1991; Collis & Biggs, 1991) is being applied in this way. Questionnaire data from two large studies of science learning of Australian students (conducted by ACER and NBEET) are being re-analysed in terms of the current theory. This paper illustrates the theory and describes a plan of further research. Specializations: science education, students' understandings of phenomena in science. Specializations: cognitive development, evaluation, mathematics and science education. Specializations: mathematics education, students' understanding of chance and data concepts.  相似文献   

6.
The importance of recent and relevant experience is being asserted for teacher educators though not others responsible for education policy and curriculum. The paper will review the “self evident” value of recent and relevant experience from the perspective of researcher/teacher educator returning to classroom teaching. The potential and implications for research on teaching and learning and the opportunities for more significant school experience in teacher education are outlined. Specializations: teacher education, science education, health education, curriculum evaluation and research.  相似文献   

7.
This paper outlines some initial findings from research on senior secondary Biology students carrying out open investigations. The study focuses on a group of 98 Form 6 (year 11) students in a large urban co-educational school. Initial findings indicate a mismatch between the students' declared confidence of their ability to plan open investigations in Biology and their demonstrated competence. Other factors germane to the introduction of problem-solving activities of an open nature into senior Biology programmes are discussed as are the implications of these for further research and classroom practice. Specializations: teacher development, practical work in science, assessment in science, curriculum development.  相似文献   

8.
Existing instruments for assessing student or teacher perceptions of characteristics of actual or preferred classroom psychosocial environment are unsuitable for one of the most important settings in science teaching, namely, the science laboratory class. Consequently, the Science Laboratory Environment Inventory (SLEI), was designed to assess student or teacher perceptions of seven scales:Teacher Supportiveness, Student Cohesiveness, Open-Endedness, Integration, Organization, Rule Clarity andMaterial Environment. An important feature of the design of the study was that the new instrument was field tested simultaneously in six countries: Australia, USA, Canada, England, Nigeria and Israel. This paper is based on a sample of 4643 students in 225 individual laboratory classes, together with the teachers of most of these classes. Preliminary analyses were used to shed light on various important research questions including the differences between Actual and Preferred environments, gender differences in perceptions of Actual and Preferred environment, the relationship between the science laboratory environment and attitude towards science laboratory work, differences between school and university laboratory classes, differences between teachers’ and students’ perceptions of the same laboratory classes, and differences between laboratory classes in different science subjects (Physics, Chemistry, Biology). Specializations: Science education, educational evaluation. Specializations: Curriculum, science education, science laboratory teaching. Specializations: Learning environments, science education, educational evaluation, curriculum.  相似文献   

9.
The potential of informal sources of science learning to supplement and interact with formal classroom science is receiving increasing recognition and attention in the research literature. In this study, a phenomenographic approach was used to determine changes in levels of understanding of 27 grade 7 primary school children as a result of a visit to an interactive science centre. The results showed that most students did change their levels of understanding of aspects of the concept “sound”. The study also provides information which will be of assistance to teachers on the levels of understanding displayed by students on this concept. Specializations: informal science learning, science curriculum Specializations: science education, science teacher education, conceptual change, learning environments.  相似文献   

10.
This paper reports on a study of the mismatch between science teachers' stated purposes and their actual teaching of science in a secondary school. Factors affecting teachers' practices include their personal beliefs about teaching, learning and the purposes of science education, the school program and the school culture. Specializations: science and technology education, professional development.  相似文献   

11.
This paper is based on findings from a three year collaborative action research project on classroom teaching and learning. The research, which involved 33 teachers, over two thousand students from six schools, and the authors, centred on exploring how various features of the classroom context influence teaching and learning processes. We interpret project findings as indicating the importance of balance between cognition and affect for effective teaching and learning. We advance the notion of challenge as a way of conceptualising this balance. Challenge comprises a cognitive/metacognitivedemand component and an affectiveinterest component. Nine major features of a teaching/learning event were found to interact to influence these cognitive and affective components of challenge. Specializations: Collaborative research on science teaching and learning; staff development and school improvement; quality of science education. Specializations: Learning and teaching science; pre-service teacher education. Specializations: teacher development in science education; technology education. Specializations: Science and teachnology curriculum, environmental education, educational disadvantage. Specializations: learning theory, probing of understanding, conceptual change.  相似文献   

12.
Post-primary science teachers in Victoria were asked to express views about primary science curriculum design and implementation. They were also asked about the value of continuity between primary and post-primary science education. The post-primary teachers generally had favourable attitudes to primary science education and considered that cooperation would be useful-though it is not common at the moment. However, the data revealed a considerable range of opinion. Post-primary science teachers' views about primary science curriculum are similar to those of primary teachers themselves, but many post-primary teachers would place more emphasis on formal or textbook knowledge. Post-primary teachers see a number of systemic problems in implementing primary science education but their positive perceptions suggest the value of encouraging more structured links. The notion of continuity across the two sectors was well supported. Specializations: science education policy and practice, teacher education, school effectiveness. Specializations: science education, teacher education in science.  相似文献   

13.
Eight physics teachers from three research schools working in collaboration with the author developed, tried, and evaluated a teaching module on “Force”. The module was designed for students in a non-western society, for whom there is no cultural term that explicitly defines the concept. This paper describes illustrative examples of the trials and evaluation exercise of the module. It concludes with a summary of the effects the teachers' interaction with the module had on their professional development. Specializations: Physics education, science education, education in developing countries.  相似文献   

14.
One of the main goals of science education is the development of scientific investigation skills (Bryce & Robertson, 1985; Woolnough & Allsop, 1985). This paper describes a practical test instrument developed to assess students’ attainment of skills associated with problem analysis and planning experiments, collecting information, organizing and interpreting information, and concluding. During administration of the test, students verbalized their thoughts as they worked on the task and their performance was videotaped for analysis. Preliminary results reveal important areas of student weakness and lead to recommendations for curriculum reform. Specializations: Science teacher education, development of problem-solving expertise, concept development and conceptual change, assessment of laboratory work. Specializations: Chemistry education, concept development and conceptual change, role of laboratory work.  相似文献   

15.
This paper highlights the challenges and problems in developing an innovative K-3 science program to support teachers in the implementation of the national Statement and Profile in science. The program has been developed by the authors in association with the Curriculum Corporation. The paper outlines the assumptions made about teachers of young children, the role of research in the construction of the program, and the extent to which the Statement and Profile have influenced the process. The resolution of a number of key problems in this curriculum development is discussed: responding to teachers' needs for a base of science discipline knowledge, developing strategies for working scientifically with very young children, and helping teachers develop an extended understanding of the nature of science. Specializations: early childhood science and technology education. Specializations: primary science education, teacher education in science, adult experiences of science and technology, and curriculum development.  相似文献   

16.
The world over, secondary school science is viewed mainly as a practical subject. This may be one reason why effectiveness of teaching approaches in science education has often been judged on the kinds of practical activity with which teachers and students engage. In addition to practical work, language??often written (as in science texts) or oral (as in the form of teacher and student talk)??is unavoidable in effective teaching and learning of science. Generally however, the role of (instructional) language in quality of learning of school science has remained out of focus in science education research. This has been in spite of findings in empirical research on difficulties science students encounter with words of the instructional language used in science. The findings have suggested that use of (instructional) language in science texts and classrooms can be a major influence on the level of students?? understandings and retention of science concepts. This article reports and discusses findings in an investigation of physics teachers?? approaches to use of and their beliefs about classroom instructional language. Direct classroom observations of, interviews with, as well as content analyses of the participant teachers?? verbatim classroom talk, were used as the methods of data collection. Evidence is presented of participant physics teachers?? lack of explicit awareness of the difficulty, nature, and functional value of different categories of words in the instructional language. In conclusion, the implications of this lack of explicit awareness on the general education (initial and in-service) of school physics teachers are considered.  相似文献   

17.
Routines are a fundamental aspect of classroom life and much attention in recent years has focused on routines for management. The concept of ‘behaviour settings’ and transitions between them as classroom routines is explained and exemplified. This view of routines provides an explanation for the difficulties faced by relieving teachers and student teachers who enter classrooms at mid year and suggests how new routines for complex science activity may be introduced. Specializations: Science curriculum science teacher education, teacher  相似文献   

18.
An important contribution to effective teaching and learning can be made by teachers' understanding of the central topics in each subject area and knowing how to transform their content knowledge into knowledge for teaching. One aspect of this knowledge is the use of analogies which can effectively communicate concepts to students of particular backgrounds and prerequisite knowledge. Indeed, analogies are considered to be an important component in the repertoire of effective teachers. However, research about teachers' use of analogies in science lessons provides little guidance about the optimum approaches that may be taken by preservice teachers, novice teachers, experienced teachers or reluctant analogy users. This paper describes the evolution of an approach for using analogies in science teaching that addresses both findings from the research literature and recognises the needs of practising teachers. Specializations: learning and teaching science concepts, technology education.  相似文献   

19.
Much Catholic school and church rhetoric suggests that Catholic schools possess distinctive learning environments. Research into this aspect of Catholic schooling has been hampered by the lack of an appropriate assessment instrument. By drawing on contemporary church literature, the perceptions of personnel involved in Catholic education and existing classroom environment questionnaires, a new instrument was developed to assess student perceptions of classroom psychosocial environment in Catholic schools. The use of this instrument in 64 classrooms in Catholic and Government schools indicated significant differences on some scales. The distinctive nature of Catholic schooling did not extend to all classroom environment dimensions deemed important to Catholic education. Specializations: Catholic education, learning environments. Specializations: conceptual change in students, science teacher professional development, scientific reasoning, learning environments. Specializations: learning environments, science education, educational evaluation, curriculum.  相似文献   

20.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号