首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
放缩法是指在不等式证明过程中,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式。简单讲就是:若要证明a〈c,可以先证a〈b,即将a放大到b,然后证明b≤c,由不等式的传递性可得a〈c。用放缩性证明不等式看似简单,实际难度大、技巧性强,要考虑如何放缩,放多大或缩多小为宜等问题。本文重点叙述一些放缩技巧,供广大师生参考。  相似文献   

2.
<正>形如n∑k=1f(k)相似文献   

3.
放缩法证明不等式主要依据不等式的传递性.利用放缩法证明不等式的关键在于如何放缩,放缩度是放缩法的关键.下面就以以下几个例子,谈谈几种常规的放缩手段.一、添上(或去掉)某些项,从而达到放缩的目的:【例1】已知a,b,c,为非负实数,试证明:a2 ab b2 b2 bc c2≥a b c.证明:∵a2 ab b2=(a 2b)2 34b2≥a 2b①b2 bc c2=(c 2b)2 34b2≥c 2b②① ②得a2 ab b2 b2 bc c2≥a b c.得证.二、通过对分子,分母的放大或缩小从而达到放缩的目的:【例2】已知a,b,c,d∈R S=a ba d b cb a c cd b d da c,求证:11aa b d>a b ac dbb c a>a b …  相似文献   

4.
一类与自然数有关的不等式证明题是高考的热点。常规证法是数学归纳法和放缩法等.但数学归纳法往往较繁;用放缩法时则盲目性较大.我们开拓另一途径.对于两个数列{an}与{bn}:(1)若ai0,bi>0时,若则有证明某些数列不等式时若能用此性质,往往可使过程简捷明快.  相似文献   

5.
<正>数学归纳法是高考考查的重点内容之一,类比与猜想是应用数学归纳法所体现的比较突出的思想。抽象与概括,从特殊到一般是应用的一种主要思想方法。例1试证明不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有a*且a、b、c互不相等时,均有an+cn+cn>2bn>2bn。命题意图:本题主要考查数学归纳法证明不等式。技巧与方法:本题中使用到结论(an。命题意图:本题主要考查数学归纳法证明不等式。技巧与方法:本题中使用到结论(ak-  相似文献   

6.
强化命题证明一类数列不等式   总被引:2,自引:0,他引:2  
数列不等式是近年来高考和竞赛中的热点题型,其中一类形如∑i=n0^n1/ai〈C(C为常数)的证明题难度较大.由于此类不等式的右边是常数,所以数学归纳法证明无法实现归纳过渡,但通过对归纳过渡过程的研究,可以放缩右边的常数,将命题加强为∑i=n0^n1/ai≤C-1/g(n),其中g(n)〉0表示关于正整数n的函数式,从而可以构造单调递减数列证明这类问题.  相似文献   

7.
证明不等式的放缩变换是指:为证明 A相似文献   

8.
杨瑞强 《数学教学》2012,(11):30-31
我们把形如sum from k=1 to n f(k)相似文献   

9.
正对满足条件n∑i=1 xi=k(≥k,≤k)的形如n∑i=1 f(xi)≤M(≥M)(k、M为常数)的条件不等式的证明是中学数学的重点和难点内容之一,通常在竞赛和高考压轴试题中出现.此类试题技巧性较强,学生在短时间内难以解决.下面介绍一种"切线法"(构造切线方程实施放缩)来证明此类条件不等式.  相似文献   

10.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

11.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

12.
题:求证:对n∈N ,112536n∑i=n i<.析:由于1()n1iF n=∑=n i递增,所以直接用数学归纳法来证明思路受阻.可以考虑把命题加强为1125()36nif n∑=n i≤?,然后用数学归纳法证明加强后的命题.先分析f(n).由于是不等式的左边是分式求和,显然猜测f(n)为分式形式较好.若f(n)为分式形式,  相似文献   

13.
文[1]利用均值不等式给出一道最值问题的通解(法一),并将该问题作了进一步的推广;文[2]用向量法对该问题及其推广进行解答(法二).本文将应用空间几何知识和柯西不等式,给出该问题及其推广的另外两种解法(法三,法四). 文[1]的问题及其推广是: 问题 已知a,b,c,x, y,z 是实数,a2 b2 c2=1, x2 y2 z2 = 9 ,求ax by cz 的最大值. 问题推广 已知ai,bi(i =1,2,L,n)且∑an n n 2 = p, 2 i ∑b i = q ,求 aibi 的最大值. ∑ i=1 i=1 i=1 …  相似文献   

14.
<正>利用数学归纳法证明不等式的关键是数学归纳法的第二步,而解决这一步的方法有放缩法与分析法。下面通过一道高考数学题的解答来说明这两种方法的运用。例题等比数列{a_n}的前n项和为Sn,已知对任意的n∈N_+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图像上。(1)求r的值;(2)当b=2时,记bn=2(log_2a_n+1)(n∈N+),证明:对任意的n∈N_+,不等式  相似文献   

15.
我们知道,放缩法是证明不等式的重要方法之一。所谓放缩法,是指如下的做法:要证 ab,将a缩小至c,通过证明c≥b间接证明原不等式成立,这叫“缩小法”。有时单方面放大或缩小还不足以解决问题,则需要两方面同时放大、缩小。因此,这种证法统称放缩法。  相似文献   

16.
由于探索性问题能够有效地考查学生的数学素质 ,因而成为高考命题的热点 .下面仅就数列中探索性问题的求解策略作些归纳 ,以期抛砖引玉 .一、利用公式直接求解例 1 是否存在常数a ,b ,c使等式 1·n+ 2 · (n -1) +… + (n -1) ·2 +n·1=an3+bn2 +cn对任意的n∈N 恒成立 ?证明你的结论 .解 对等式左边求和 .∑nk=1k(n+ 1-k)=∑nk=1[k(n+ 1) -k2 ]=(n+ 1) ∑nk=1k -∑nk=1k2=n(n+ 1) 22 -n(n+ 1) (2n + 1)6=n3+ 3n2 + 2n6.比较系数可得a=16,b=12 ,c=13 .二、先用特值探路 ,再用数学归纳法证明对于例 1,分别令n =1,2 ,3 ,代入等式 ,得a +b+…  相似文献   

17.
1柯西不等式的基本形式及推广由文献知柯西不等式(cauchy)表述为:对任意a1,a2…,aa;b1,b2…ba∈R,有(a1b1 a2b2 … anbn)2(a21 a22 …a2n)(b21 b22 …b2n),当且仅当a1b1=a2b2=A=anbn时,等号成立(简记为∑ni=1aibj2n∑i=1a2i∑ni=1b2i).柯西不等式有着非常广泛的应用,下面先介绍  相似文献   

18.
对满足条件n∑ i=1 xi=k(≥k,≤k)的形如n∑ i=1 f(xi)≤M(≥M)(k、M为常数)的条件不等式的证明是中学数学的重点和难点内容之一,通常在竞赛和高考压轴试题中出现.此类试题技巧性较强,学生在短时间内难以解决.下面介绍一种“切线法”(构造切线方程实施放缩)来证明此类条件不等式. 切线法 对于x1,x2,…,xn∈D,其中D为给定区间,n∑i=1 xi=k(≥k,≤k),(k为常数),求证:∑f(xi)≤M(≥M).  相似文献   

19.
不等式是高中数学的重要内容之一,是解决数学问题的重要工具,不等关系与不等式的性质是解、证不等式的基础.在学习不等式的性质时,要特别注意以下几点:1.对任意两个实数a、b有a-b>0a>b,a-b=0a=b,a-b<0a相似文献   

20.
近年来,在会考、高考和数学竞赛中,有关数学归纳法的题目屡见不鲜,且尤其以证明不等式的问题为著.究其原因,一是数学归纳法本身应用的广泛性,二是不等式证明的灵活性和综合性.它既需要学生对数学归纳法应用程式的深刻理解,又需要学生对不等式证明的各种技巧的灵活运用.为此,本文举例说明数学归纳法证明不等式的几种常用技巧,供大家参考.1°分析法技巧利用归纳假设完成证明时,由于导出的式子与要证的式子联系不强,可考虑采用分析法来证.例1设a>0,b>0,n∈N.证明证(1)当n=1时,命题显然成立.(2)假设n=k时,命题成立.即由…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号