首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
毛金海  郑新春 《考试》2003,(12):14-15
在直线与双曲线的位置关系的教学过程中,有一类求以某点中点的的弦(称中点弦)所在的直线方程的问题,这类问题对培养学生解决直线与双曲线的位置关系的题目的能力,培养解题的规范性、思维的严密性和思维的深刻性等具有重要的意义:  相似文献   

2.
《考试周刊》2019,(13):75-76
对于中点弦问题同学们习惯用"点差法"解决,首先回忆一下点差法的步骤:1.设点,设出弦的两端点坐标;2.代入,代入圆锥曲线方程;3.作差,两式相减,再用平方差公式展开;4.整理,转化为斜率与中点坐标的关系式,然后求解。  相似文献   

3.
魏道勇 《考试周刊》2011,(35):70-71
本文通过对一道习题的研究,引出双曲线的中点弦的存在性的探讨。经过演算,分类讨论,推理得出判断中点弦是否存在的判定方法。  相似文献   

4.
性质 设P1、P2是双曲线x2a2-y2b2=1上两点,P(xp,yp)是弦P1P2的中点,直线P1P2的斜率为k,则有 ypxp·k=b2a2.证明较简单,此处从略.应用此性质来解决有关双曲线中点弦的问题,有简捷明快、出奇制胜之感.本文拟谈谈该性质的应用.1 求中点弦例1 直线x+y-2=0被双曲线x23-y2=1所截得的弦的中点是.解 设弦的中点为(x0,y0),则由性质可得y0x0·(-1)=13, ∴ x0+3y0=0.(1)又点(x0,y0)在直线x+y-2=0上,∴ x0+y0-2=…  相似文献   

5.
6.
7.
本文以具体例子讨论了双曲线的中点弦所在直线是否存在的问题,进而探究了双由线的中点弦问题的解法.文中给出的求双曲线的中点弦所在直线方程的解法都是常用方法,强化这些解法的运用有利于提高学生的解题能力,培养创新思维能力.  相似文献   

8.
一、以已知点为中点的圆锥曲线中点弦的存在性问题  相似文献   

9.
直线与圆锥曲线问题,一直是高中数学研究的重点所在,而作为直线与圆锥曲线中特殊的点——弦中点问题,更是为我们平常之所见.一、椭圆与双曲线的弦中点性质设AB为圆锥曲线x2/m+y2/n=1的一条不垂直于坐标轴的弦,异于原点的点P(x0,y0)为AB中点,则kAB·kOP=-n/m.证明(点差法)如图1,设A(x1,  相似文献   

10.
设A(x_1,y_1),B(x_2,y_2)两点在椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)上,M(x_0,y_0)是AB的中点,则有(?)由③-④得  相似文献   

11.
很多数学报及兄弟刊物都介绍过中点弦所在直线方程问题.有的甚至给出了公式式的结论,但结论较为复杂不易记忆.本文介绍两种更为行之有效的方法. 我们先证明一个命题:二次曲线F(x,y)=0,以定点P(x0,y0)为中点的弦所在的直线方程为:F(2x0-x,2y0-y)=0.然后便可套用结论,直接得出方程. 证明:设以P(X0,y0)为中点的二次曲线F(x,y)=0的弦的两个端点分别为A、B,且A(x,y),则B(2x0-x,2y0-y),由于A、B均是二次曲线F(x,y)=0上的点,从而可得 F(x,y)=0 ① F(2x0-x,2y0-y)=0 ②  相似文献   

12.
代银 《数学教学通讯》2007,(9):64-64,F0003
文[1]给出了双曲线平行弦的两个优美性质:性质1如图1,过双曲线xa22-by22=1(a>0,b>0)的顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP∥AQ,则|OP|2=12|AR|·|AQ性|.质2如图2,MN是过双曲线xa22-yb22=1(a>0,b>0)的焦点F的弦,过双曲线中心O的半弦OP∥MN,则|OP|2=2a|MN|.文[2]类比探  相似文献   

13.
在对椭圆、双曲线的定点弦的研究中,笔者发现以下一组有趣性质: 我们先约定:椭圆(或双曲线)的方程为ax^2+by^2=1(a、b为常数),它的弦AB过定点T(m,n).  相似文献   

14.
1999年第 5期《数学教学研究》刊登了袁良佐老师“双曲线中点弦性质的应用”和王景斌老师“抛物线弦的中点问题”两篇文章 ,读后颇有启发 .本文给出椭圆中点弦的一个性质 ,并举例说明它的应用 .性质 设A、B是椭圆x2a2 y2b2 =1(a >0 ,b >0 )上两点 ,P(x0 ,y0 )是弦AB的中点 ,则有kAB·kOP=- b2a2 .证明 设A(x1 ,y1 ) ,B(x2 ,y2 )是椭圆 x2a2 y2b2= 1上两点 ,则有x21 a2 y21 b2 =1,  x22a2 y22b2 =1,两式相减 ,得  x21 -x22a2 y21 - y22b2 =0 ,即 (x1 x2 ) (x1 -x2 )a2 …  相似文献   

15.
在平面解析几何中,经常会遇到这样的一类问题,已知如下条件(1)经过某点的直线与圆锥曲线相交两点,使这点为两交点的中点;(2)圆锥曲线  相似文献   

16.
本文介绍圆锥曲线与中点弦有关的一个性质.性质1如图1,已知点P是椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的弦MN的中点,与MN平行的直线交椭圆于A,B两点,AP与椭圆交于点C,BP与椭圆交于点D,则CD∥AB.证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,  相似文献   

17.
直线和圆锥曲线的位置关系,是解析几何中最主要的题型,这类问题涉及到圆锥曲线的性质和直线的基本知识以及线段的中点、弦长等.解决的方法往往采用数形结合思想、“设而不求”的方法和韦达定理.其中椭圆、双曲线、抛物线的中点弦存在性问题是相当常见的.由于椭圆和抛物线的弦的  相似文献   

18.
性质 1 圆 (x -h) 2 (y-k) 2 =r2 中 ,以P0 (x0 ,y0 ) (x0 ≠h或y0 ≠k)为中点弦的所在的直线方程为(x0 -h) (x-x0 ) (y0 -k) (y- y0 ) =0 .当h =k=0时方程变为x0 (x -x0 ) y0 (y - y0 ) =0 .证明 设弦所在直线与圆交于A(x1,y1) ,B(x2 ,y2 ) ,所以有(x1-h) 2 (y1-k) 2 =r2 ,(1)(x2 -h) 2 (y2 -k) 2 =r2 . (2 )(2 ) - (1)得   (x2 -x1) (x1 x2 - 2h)   =- (y2 - y1) (y1 y2 - 2k) .当x2 ≠x1时 ,可变为x1 x2 - 2hy1 y2 - 2k =- y2 - y1x2 -x1.又P0 (x0 ,y0…  相似文献   

19.
圆锥曲线的中点弦在平面解几中是一种很常见的问题,解决这类问题的一般方法是由直线方程和圆锥曲线方程组成方程组,消去y(或x)后得到关于x(或y)的一元二次方程,再利用中点公式解决.当由直线方程、圆锥曲线方程组成的方程组较复杂时,用这种方法就较繁琐,运算量大.此时  相似文献   

20.
文[1]给出椭圆与双曲线共轭弦的两个等比性质,读后颇受启发.本文将其性质作进一步的推广,又得到几个有趣的等比性质,兹介绍如下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号