首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求函数值域问题是高中数学的重点和难点,也是高考的热点.本文对求函数值域常用方法作些归纳,供同学们参考.一、分离常数法例1求函数y=x2-xx2-x+2的值域.解:y=x2x-2-x+x2=1-x2-2x+2,而x2-x+2=x-212+74≥47,所以0相似文献   

2.
在高中数学中,求函数的值域是一种较为复杂的问题,往往方法较为灵活.现举一例,给出多种解法,同学们可从中受到启发.例题求函数y=sinx2-cosx的值域.解法一:(利用三角函数的有界性)去分母化为sinx+ycosx=2y,即y2+1sin(x+φ)=2y.因为|sin(x+φ)|≤1,所以|2y|≤y2+1,即3y2≤1.解得值域是[-33,33].解法二:(利用解析几何方法)函数变形为:y=0-(-sinθ)2-cosθ.联想到斜率公式,(如图1)可知y是连结A(2,0)与圆x2+y2=1上的点(cosθ,-sinθ)的斜率.所求值域就是这斜率的取值范围.设AB,AC为两切线,它们的斜率分别是-33,33.所以值域是[-33,33].解法三:(…  相似文献   

3.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

4.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

5.
求函数的值域是中学数学中较为重要的题型之一,解决它没有固定的模式,也难以形成思维定势,因此应善于思考,多归纳积累,特别需要掌握常见题型的求函数值域方法,丰富自己的解题经验,下面从一题多解的角度来看求函数值域的方法.解法1:利用三角换元,令x=tanα,α∈(-π2,π2)则y=11-+ttaann22αα=ccooss22αα-+ssiinn22αα=cos2α∵α∈(-π2,π2)∴-π<2α<π∴y∈(-1,1]解法2:利用分离常数进行转化∵y=1-x21+x2=2-1+1-x2x2=1+2x2-1又∵1+x2≥1,∴0<21+x2≤2∴-1相似文献   

6.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

7.
三角代换法是代数式化简、变形和求值中常用的方法之一 .在使用此方法求函数的值域或最值时 ,容易出现错误 .请先看全国著名一线教师编著的《中学数理化一题多解系列丛书——高中数学卷》(东北师范大学出版社出版 )上一个题目及其解答 :求函数 y =x 1 - x2的最大、最小值 .解 :解法 1 :把函数变形为 y - x =1 - x2 1即 (y - x) 2 =1 - x2 22 x2 - 2 yx y2 - 1 =0 ,方程有实根Δ =4 y2 - 8(y2 - 1 ) =8- 4y2≥ 0y2≤ 2 ,所以 - 2≤ y≤ 2函数的最大值为 ymax =2 ,最小值 ymin =- 2 .解法 2 :设 x =sinθ (- π2 ≤θ≤ π2 ) ,则y =sinθ…  相似文献   

8.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

9.
一策——直接法有的函数的结构并不复杂,可以通过基本函数的值域及不等式性质直接观察出函数的值域.【例1】求函数y=x21 2的值域.解:∵x2≥0∴x2 2≥2∴0相似文献   

10.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

11.
一、解决函数问题例1.求函数y=x-1-2x√的值域.解:由函数解析式易知,此函数定义域为x≤12.令y1=x,y2=-1-2x√,由图1可知,当x=12时,ymax=12,故所求值域为(-∞,12).〔评注〕函数的图象是函数对应规律的几何表示,能直观地反映函数的性质,是解决函数问题的有力工具。其关键是把函数的性质与图象的性质结合起来,即数形结合。二、解决解析几何问题例2.已知x2+4y2=4(x-4)2+y2=r2 表示两曲线有公共点,求r的最值.解:将方程x2+4y2=4化为标准式x222+y2=1,它表示中心在0(0,0),长半轴为2在X轴上,短半轴为1在y轴上的椭圆.方程(x-4)2+y2=r2表示圆心在A(4,0…  相似文献   

12.
一、运用方程思想 运用方程思想求函数的值域,就是将函数 y=f( x)的解析式视为关于 x的方程,根据方程有实数解的条件,求出使该方程在函数定义域内有解的所有 y值的集合,即为函数 y=f( x)的值域 .  例 1求函数 y=的值域 .  解 原式可化为 y=. 变形得 (y- 1)tg2x+( 1+ y) tgx+( y- 1) =0. 则关于 x的方程在已知函数定义域内有解的充 要条件是或 y=1.解得 ≤ y≤ 3, ∴所求函数的值域为〔, 3〕. 二、借助函数的几何意义 借助函数的几何意义求函数最值,充分发挥代换法及利用数形结合两方面的优势,是一种既可化…  相似文献   

13.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

14.
一、配方法如给定函数解析式为二次三项式常用此法.例1求函数y=x2-ax(a为常数),x∈[-1,1]的值域.解:因为y=x2-ax=(x-2a)2-a42.(1)当2a≤-1,即a≤-2时,f(-1)≤f(x)≤f(1),函数的值域为[1 a,1-a];(2)当-1<2a≤0,即-2≤a≤0时,f(2a)≤f(x)≤f(1),函数的值域为[-a42,1-a];(3)当0相似文献   

15.
求函数值域的方法很多 ,也没有一种固定的方法 .只能依据函数解析式的结构特征来选择相应的解法 .常用的方法有 :一、配方法形如 f(x) =ag2 (x) +bg(x) +c的函数的值域问题 ,都可使用配方法 .例 1 求函数 y =-x2 +2x+3 的值域 .解 令u=-x2 +2x +3=-(x2 -2x+1 ) +4=-(x-1 ) 2 +4,显然有     0 ≤u ≤ 4.由 y =u ,得  0≤ y≤ 2 .因此 ,函数的值域为 [0 ,2 ].例 2 求函数 y =sin2 x -2sinx +2 -π4<x≤π 的值域 .解 令u =sinx -π4<x≤π ,则-22 <u≤ 1 ,函数 y=u2 -2u+2=(u-1 ) 2 +1 .…  相似文献   

16.
姚立新 《甘肃教育》2005,(1):104-104
例1.求函数y=x-√(1-2x)的值域,解:由函数解析式易知,此函数定义域为x≤1/2。令y1=x,y2=√(1-2x),  相似文献   

17.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

18.
贵刊2000年第11期第34页介绍了函数y(ac<0)值域的一种三角换元求法.但笔者认为,过程不简,运算量大,可改进为如下三角换元. 容易证明:若0≤x≤π/2,则 (1)当0<θ≤π/4时,sinθ≤sin(x+θ)≤1; (2)当π/4<θ<π/2时,cosθ≤sin(x+θ)≤1. 例1 求函数的值域. 解:所给函数化为  相似文献   

19.
一、反函数策略例1求函数y=3-x2x+5的值域.分析此题可用“观察法”,但形如y=ax+bcx+d的值域问题,用反函数法尤为简洁.解函数y=3-x2x+5的反函数为y=3-5x2x+1,而y=3-5x2x+1的定义域为x|x≠-12 ,∴原函数的值域为y|y≠-12 .二、换元策略例2求函数y=2x+41-x姨的值域.分析可将原式2x移至等式左边后,再两边平方,用“Δ法”求解,但是值域范围有可能扩大.若令t=1-x姨≥0,则x=1-t2,从而将原式转化为在限制条件下,即t≥0时二次函数的值域问题.解令t=1-x姨≥0,则x=1-t2,故原式为y=2穴1-t2雪+4t=-2穴t-1)2+4≤4,∴原函数的值域为(-∞,4].三、数形结合…  相似文献   

20.
正"分离"是高中数学中常用的一种解题技巧,掌握这种技巧,对于简化相应题目的思维量与解题步骤大有裨益.笔者结合教学实践谈一下四种常用的分离技巧.1分离自变量函数中有自变量与因变量,我们常见的函数是因变量关于自变量的函数.分离自变量即是把自变量通过变形从函数解析式中分离出来.例1求函数y=10x-110x+1的值域.解:y=10x-110x+1,10x-1=y·10x+y,10x=y+11-y,所以x=lgy+11-y,由y+11-y0,得-1y1,所以函数y=10x-110x+1的值域为(-1,1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号