首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
论传统武术创新的难点   总被引:2,自引:0,他引:2  
如今传统武术处在发展的低谷,许多人提出了传统武术的发展之道,而且认识到传统武术的发展离不开创新。通过对传统武术的回顾,分析了传统武术创新的必要性,并指出传统武术创新过程中将面临传统武术理论、技能、思维方式与现代人的差异以及科研人力的断层等方面的困难,以期为传统武术的继承和发展提供依据。  相似文献   

2.
《体育信息专刊》为内蒙古自治区优秀运动队服务的研究   总被引:2,自引:1,他引:1  
对1998—2001年《体育信息专刊》为内蒙古自治区优秀运动队服务进行了研究分析。结果表明:它充分发挥了情报信息的耳目作用,为领导决策提供科学依据,为优秀运动队取得优异成绩奠定基础,为教练员自身业务能力、专业水平和科学化训练水平的提高。起到了促进作用;为内蒙古自治区体育健儿在全国九运会及国内外重要比赛中取得优异成绩做出了贡献,起到了“信息保驾护航”的重要作用。  相似文献   

3.
Following preliminary indications that in some individuals arm exercise enhanced rather than reduced simultaneous leg endurance, ten young men and women performed three forms of intermittent work to volitional exhaustion, under duty cycles of 45 s work, 15 s rest. The protocols were as follows: (A) knee extensions at 30% maximum voluntary contraction (MVC); (B) 30% MVC knee extensions combined with arm cranking at 130% of their own lactate threshold; (C) combined 30% MVC knee extensions and arm cranking at 20% of their own lactate threshold. Heart rate, oxygen uptake (VO(2)), and blood lactate concentration were among the variables recorded throughout. All physiological indicators of demand were substantially higher in protocol B than in protocols A or C [heart rate: (A) 154 beats . min(-1), (B) 171 beats . min(-1), (C) 150 beats . min(-1); VO(2): (A) 11.9 ml . kg(-1) . min(-1), (B) 21.7 ml . kg(-1) . min(-1), (C) 14.2 ml . kg(-1) . min(-1); blood lactate concentration: (A) 3.3 mmol . l(-1), (B) 5.1 mmol . l(-1), (C) 2.8 mmol . l(-1)], yet there were no significant differences (P > 0.05) in the endurance times between the three conditions [(A) 11.43 min, (B) 11.1 min, (C) 10.57 min] and seven participants endured longest in protocol B. Results from protocol (C) cast doubt on explanations in terms of psychological distraction. We suggest that lactic acid produced by the arms is shuttled to the legs and acts there either as a supplementary fuel source or as an antagonist to the depressing effects of increased potassium concentration.  相似文献   

4.
In this study, we assessed the performance of trained senior (n = 6) and veteran (n = 6) cyclists (mean age 28 years, s = 3 and 57 years, s = 4 respectively). Each competitor completed two cycling tests, a ramped peak aerobic test and an indoor 16.1-km time-trial. The tests were performed using a Kingcycle ergometer with the cyclists riding their own bicycle fitted with an SRM powermeter. Power output, heart rate, and gas exchange variables were recorded continuously and blood lactate concentration [HLa] was assessed 3 min after the peak ramped test and at 2.5-min intervals during the time-trial. Peak values for power output (RMP(max)), heart rate (HR(peak)), oxygen uptake (VO2(peak)), and ventilation (V(Epeak)) attained during the ramped test were higher in the senior group (P < 0.05), whereas [HLa](peak), RER(peak), V(E): VO2(peak), and economy(peak) were similar between groups (P > 0.05). Time-trial values (mean for duration of race) for power output (W(TT)), heart rate (HR(TT)), VO2 (VO(2TT)), and V(E) (V(ETT)) were higher in the seniors (P < 0.05), but [HLa](TT), RER(TT), V(ETT): VO2(TT), and economy(TT) were similar between the groups (P > 0.05). Time-trial exercise intensity, expressed as %RMP(max), %HR(peak), % VO2(peak), and % V(Epeak), was similar (P > 0.05) for seniors and veterans (W(TT): 81%, s = 2 vs. 78%, s = 8; HR(TT): 96%, s = 4 vs. 94%, s = 4; VO2(TT): 92%, s = 4 vs. 95%, s = 10; V(ETT): 89%, s = 8 vs. 85%, s = 8, respectively). Overall, seniors attained higher absolute values for power output, heart rate, VO2, and V(E) but not blood lactate concentration, respiratory exchange ratio (RER), V(E): VO2, and economy. Veterans did not accommodate age-related declines in time trial performance by maintaining higher relative exercise intensity.  相似文献   

5.
The aim of this study was to determine which physiological variables predict excellence in middle- and long-distance runners. Forty middle-distance runners (age 23 ± 4 years, body mass 67.2 ± 5.9 kg, stature 1.80 ± 0.05 m, VO(2max) 65.9 ± 4.5 ml · kg(-1) · min(-1)) and 32 long-distance runners (age 25 ± 4 years, body mass 59.8 ± 5.1 kg, stature 1.73 ± 0.06 m, VO(2max) 71.6 ± 5.0 ml · kg(-1) · min(-1)) competing at international standard performed an incremental running test to exhaustion. Expired gas analysis was performed breath-by-breath and maximum oxygen uptake (VO(2max)) and two ventilatory thresholds (VT(1) and VT(2)) were calculated. Long-distance runners presented a higher VO(2max) than middle-distance runners when expressed relative to body mass (P < 0.001, d = 1.18, 95% CI [0.68, 1.68]). At the intensities corresponding to VT(1) and VT(2), long-distance runners showed higher values for VO(2) expressed relative to body mass or %VO(2max), speed and oxygen cost of running (P < 0.05). When oxygen uptake was adjusted for body mass, differences between groups were consistent. Logistic binary regression analysis showed that VO(2max) (expressed as l · min(-1) and ml · kg(-1) · min(-1)), VO(2VT2) (expressed as ml · kg(-0.94) · min(-1)), and speed at VT(2) (v(VT2)) categorized long-distance runners. In addition, the multivariate model correctly classified 84.7% of the athletes. Thus, VO(2max), VO(2VT2), and v(VT2) discriminate between elite middle-distance and long-distance runners.  相似文献   

6.
Individuals with chronic obstructive pulmonary disease (COPD) have been shown to benefit from participation in pulmonary rehabilitation (PR) programs that include exercise training and education. Purpose: To examine the relationship between improvements in 6 minute walk distance and perceived quality of life in individuals with COPD following completion of a PR program. Methods: The records of 139 individuals completing a PR program (3 times a week for 8 weeks) were retrospectively examined. Prior to entry and upon completion of the program each individual completed a 6 minute walk test (6MWT), the SF-36 Health survey, and the UCSD Shortness of Breath Questionnaire (SOB). SF-36 results were analyzed according to 8 subscales [Physical Functioning (PF), Role Physical (RF), Bodily Pain (BP), General Health (GH), Vitality (V), Social Functioning (SF), Role Emotional (RE), and Mental Health (MH)]. Results: PR resulted in significant improvements in 6MWTdistance (Pre = 845 ± 37 ft, Post = 1127 ± 32 ft, p < 0.001), PF (p < 0.001), RF (p = 0.001), Vitality (p = 0.002), SF (p < 0.001), RE (p = 0.037), MH (p < 0.001) and SOB (Pre = 53 ± 2, Post = 47 ± 2, p < 0.001). The change in 6MWT distance was not related to changes in PF (r = 0.17), RF (r = 0.03), GH (r = 0.03), Vitality (r = −0.001), SF (r = 0.01), RE (r = 0.06), MH (r = −0.04) or SOB (r = 0.12). The magnitude of improvement in 6MWT distance (68%) was much greater than that observed in PF (15%), RF (16%), GH (6%), VT (18%), SF (20%), RE (14%), MH (14%), or SOB (8%). Conclusions: PR has a positive impact on 6 minute walk distance and perceived quality of life in individuals with COPD; however, changes in 6 minute walk distance appear to have no relationship to changes in perceived quality of life.  相似文献   

7.
火针、激光火针在慢性运动损伤中的应用   总被引:6,自引:0,他引:6  
回顾了火针的概况、慢性运动损伤局部的组织病理学变化,从现代医学和传统医学角度初步分析了火针、激光火针治疗慢性运动损伤的机制,总结了火针和激光火针在治疗慢性运动损伤方面的应用。  相似文献   

8.
The aim of the present study was to develop and cross-validate anthropometrical prediction equations for segmental lean tissue mass (SLM). One hundred and seventeen young healthy Caucasians (67 men and 50 women; mean age: 31.9 ± 10.0 years; Body Mass Index: 24.3 ± 3.2 kg · m(-2)) were included. Body mass (BM), stretch stature (SS), 14 circumferences (CC), 13 skinfolds (SF) and 4 bone breadths (BB) were used as anthropometric measurements. Segmental lean mass of both arms, trunk and both legs were measured by dual energy X-ray absorptiometry as the criterion method. Three prediction equations for SLM were developed as follows: arms = 40.394(BM) + 169.836(CCarm-tensed) + 399.162(CCwrist) - 85.414(SFtriceps) - 39.790(SFbiceps) - 7289.190, where Adj.R (2) = 0.97, P < 0.001, and standard error of estimate (SEE) = 355 g;trunk = 181.530(BM) + 155.037(SS) + 534.818(CCneck) + 175.638(CCchest) - 88.359(SFchest) - 147.232(SFsupraspinale) - 46522.165, where Adj.R(2) = 0.97, P < 0.001, and SEE = 1077g; and legs = 55.838(BM) + 88.356(SS) + 235.579(CCmid-thigh) + 278.595(CCcalf) + 288.984(CCankle) - 84.954(SFfront-thigh) - 53.009(SFmedial calf) - 28522.241, where Adj.R (2) = 0.96, P < 0.001, and SEE = 724 g. Cross-validation statistics showed no significant differences (P < 0.05) between observed and predicted SLM. Root mean squared errors were smallest for arms (362 g), followed by legs (820 g) and trunk (1477 g). These new prediction equations allow an accurate estimation of segmental lean mass in groups of young adults, but estimation errors of 8 to 14% can occur in certain individuals.  相似文献   

9.
Six male cricket bowlers (mean +/- s(mean): age 23.5 +/- 1.3 years; height 1.83 +/- 0.04 m; body weight 826 +/- 20 N) performed their typical bowling action at a set of stumps positioned at standard pitch length (20.1 m). A specially designed force platform rig allowed the correct positioning of two force platforms to be achieved beneath an outdoor polyflex runway (0.017 m depth) for each player's delivery stride pattern. For the back foot, the peak vertical ground reaction force was 1.95 +/- 0.08 kN (2.37 +/- 0.14 BW) and the braking force was 0.77 +/- 0.12 kN (0.94 +/- 0.16 BW). For the front foot, the peak vertical force was 4.80 +/- 0.92 kN (5.75 +/- 0.98 BW) and the braking force was 2.93 +/- 0.56 kN (3.54 +/- 0.67 BW). The mean peak vertical loading rate for front foot contact was 205 +/- 52.8 kN x s(-1) (249 +/- 64 BW x s(-1)) with mean values ranging from 81 to 446 kN x s(-1) (98 to 540 BW x s(-1)). The range for back foot contact was much smaller, 25-70 kN x s(-1) (30-85 BW x s(-1)), with a mean of 41.7 +/- 7.10 kN x s(-1) (50.6 +/- 8.6 BW x s(-1)). Mean peak impact occurred 24 ms after touchdown for the back foot and 16 ms after touchdown for the front foot. At impact, mean peak loading rates were greater for the front foot at 246 kN x s(-1) (298 BW x s(-1)), with a range of 80-483 kN x s(-1) (98-534 BW x s(-1)), than for the back foot at 65 kN x s(-1) (79 BW x s(-1)), with a range of 40-84 kN x s(-1) (49-110 BW x s(-1)).  相似文献   

10.
In this study, we examined the effects of a prior run-up on intermittent maximal vertical jump performance. Seven regionally ranked male volleyball players volunteered to participate in the study. They performed three randomized tests: (1) six repeated intermittent maximal jumps (jump condition), (2) six repeated intermittent run-ups (run-up condition), and (3) six repeated run-ups followed by maximal jumps (run-up plus jump condition). All performances were assessed and blood lactate concentration and heart rate were measured before and after each of the tests. Mean ( +/- ) jump performance (64.7 +/- 2.3 cm) increased significantly (P = 0.02) over the course of the jump condition and was significantly higher (P < 0.001) than for the run-up plus jump condition (58.0 +/- 3.2 cm), which tended to decrease with repetition. Blood lactate concentration was significantly higher in the run-up plus jump condition (3.73 +/- 0.24 mmol . l(-1)) than in the jump (2.61 +/- 0.26 mmol . l(-1), P = 0.02) and run-up (2.86 +/- 0.18 mmol . l(-1), P = 0.03) conditions. The increase in heart rate was significantly higher both in the run-up plus jump condition (33 +/- 6 beats . min(-1), P = 0.05) and run-up condition (33 +/- 4 beats . min(-1), P = 0.02) than in the jump condition (21 +/- 3 beats . min(-1)). The results indicate that the addition of run-ups probably impeded performance in the repetition of vertical jumps.  相似文献   

11.
The purpose of this study was to assess the validity of predicting the maximal oxygen uptake (VO2(max)) of sedentary men from sub-maximal VO2 values obtained during a perceptually regulated exercise test. Thirteen healthy, sedentary males aged 29-52 years completed five graded exercise tests on a cycle ergometer. The first and fifth test involved a graded exercise test to determine VO2(max). The two maximal graded exercise tests were separated by three sub-maximal graded exercise tests, perceptually regulated at 3-min RPE intensities of 9, 11, 13, 15, and 17 on the Borg ratings of perceived exertion (RPE) scale, in that order. After confirmation that individual linear regression models provided the most appropriate fit to the data, the regression lines for the perceptual ranges 9-17, 9-15, and 11-17 were extrapolated to RPE 20 to predict VO2(max). There were no significant differences between VO2(max) values from the graded exercise tests (mean 43.9 ml x kg(-1) x min(-1), s = 6.3) and predicted VO2(max) values for the perceptual ranges 9-17 (40.7 ml x kg(-1) x min(-1), s = 2.2) and RPE 11-17 (42.5 ml x kg(-1) x min(-1), s = 2.3) across the three trials. The predicted VO2(max) from the perceptual range 9-15 was significantly lower (P < 0.05) (37.7 ml x kg(-1) x min(-1), s = 2.3). The intra-class correlation coefficients between actual and predicted VO2(max) for RPE 9-17 and RPE 11-17 across trials ranged from 0.80 to 0.87. Limits of agreement analysis on actual and predicted VO2 values (bias +/- 1.96 x S(diff)) were 3.4 ml x kg(-1) x min(-1) (+/- 10.7), 2.4 ml x kg(-1) x min(-1) (+/- 9.9), and 3.7 ml x kg(-1) x min(-1) (+/- 12.8) (trials 1, 2, and 3, respectively) of RPE range 9-17. Results suggest that a sub-maximal, perceptually guided graded exercise test provides acceptable estimates of VO2(max) in young to middle-aged sedentary males.  相似文献   

12.
BJ-2搏击项群训练与监控系统的应用方法   总被引:1,自引:0,他引:1  
BJ-2搏击项群训练与监控系统是专门用于对拳击、散打、跆拳道等搏击项目的技术动作进行定量分析与诊断的体育装备,其主要功能有:①获得单击打击力量(F)、打击速度(V)、打击冲量(S)、打击爆发力(P)参数;②获得连击的最大力量(Fm)、连击的最大速度(Vm)、连击的最大冲量(Sm)、连击的最大爆发力(Pm)参数,同时还可获得连击的力量衰减率(Fμ)、速度衰减率(Vμ)、爆发力衰减率(Pμ)参数以及在设定时间内的打击次数(N);③实现测试参数、曲线可视化与储存功能。  相似文献   

13.
The purpose of this study was to develop and cross-validate anthropometric body composition equations for the elderly (i.e., ≥ 65 years old). This was undertaken due to a lack of accurate and reliable body composition equations for the elderly. One-hundred fifty male (n = 75) and female (n = 75; mean age = 70 years, SD = 3.71 years) elderly were randomly assigned to either an equation development sample (n = 50) or an equation validation sample (n = 25), respectively. The male and female development and validation sample groups, respectively, were joined to make combined development (n = 100) and validation (n = 50) samples. Hydrodensitometry was used to determine participant body density, percent fat, fat-free mass, and fat weight for use as the criterion variables by which prediction equations could be developed and validated. The equations presented are for the prediction of body density [body density = 1.0554 + .0142 (gender) + .0267 (height) - .00022 (midaxillary) - .00086 (hip circumference)], percent fat [% fat = .1688 (body mass index) + .542 (hip circumference) -.1639 (weight) -5.7033 (gender) -7.9498], fat-free mass [fat-free mass = 30.3769 + 8.0108 (height) + .824 (weight) - .1355 (suprailiac) - .5419 (hip circumference)], and fat weight [fat weight = .2449 (weight) + .5218 (hip circumference) - .076 (thigh circumference) - 4.0299 (gender) - 37.8619]. The equations provided estimates that were not statistically different from the hydrostatically determined criterion variables but were statisfically different from estimates derived from other published "elderly" body composition equations.  相似文献   

14.
In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O(2max)) and ventilatory thresholds (VT(1) and VT(2)) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O(2) corresponding to VT(1) and VT(2) were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O(2) (ml · min(-1)) was different between groups for VT(1), VT(2), and [Vdot]O(2max). Ratio standards (ml · kg(-1) · min(-1)) were not significantly different between groups for VT(1), VT(2), and [Vdot]O(2max). Theoretical exponents (ml · kg(-0.67) · min(-1) and ml · kg(-0.75) · min(-1)) were not properly adjusted for the body mass effects on VT(1), VT(2), and [Vdot]O(2max). When the data were correctly adjusted using experimentally observed exponents, VT(1) (ml · kg(-0.94) · min(-1)) and VT(2) (ml · kg(-0.95) · min(-1)) were not different between groups. The experimentally observed exponent for [Vdot]O(2max) (ml · kg(-0.90) · min(-1)) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT(1), VT(2) or [Vdot]O(2max) when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

15.
To characterize hypertrophy and quantify seasonal changes in cardiac structure and function of women collegiate basketball (BB) athletes (n = 15), echocardiographic (echo) measurements were made in the fall (FALL1), winter (WIN), and spring (SPR), then again during the subsequent fall (FALL2; n = 10). Comparisons were made to age-matched nonathletes (NA) measured during FALL1 (n = 22) and SPR (n = 5). Left ventricular (LV) internal dimension-diastole (LVIDd), LV end-diastolic volume (LVEDV), stroke volume (SV), LV mass (LVM), septal thickness (IVS), LV posterior wall thickness (LVPW), right ventricular (RV) internal dimension-diastole (RVIDd), and aortic root diameter (AOD) were significantly larger (12-70%) in the athletes; RVIDd-, LVEDV-, SV-, and LVM-index were also significantly greater (8-46%). From FALL1 to SPR measurement periods, LVIDd, RVIDd, LVEDV, SV, IVS, and LVM-index increased significantly (7-18%) in the athletes. Over the same period of time, LVIDd, LAD, AOD, LVEDV, and SV measured in the five NA subjects increased significantly. In the athletes, LVIDs, RVIDd, IVS, LVPW, and LVM decreased significantly (5-30%) from the SPR to FALL2 measurement period. These data characterize the general nature of the cardiac hypertrophy noted in women BB athletes compared to NA controls and show that distinct changes in heart structure corresponding to different periods of the competitive season can occur in these athletes.  相似文献   

16.
Abstract

To characterize hypertrophy and quantify seasonal changes in cardiac structure and function of women collegiate basketball (BB) athletes (n = 15), echocardiography (echo) measurements were made in the fall (FALL1), winter (WIN), and spring (SPR), then again during the subsequent fall (FALL2; n = 10). Comparisons were made to age-matched nonathletes (NA) measured during FALL1 (n = 22) and SPR (n = 5). Left ventricular (LV) internal dimension–diastole (LVIDd), LV end-diastolic volume (LVEDV), stroke volume (SV), LV mass (LVM), septal thickness (IVS), LV posterior wall thickness (LVPW), right ventricular (RV) internal dimension-diastole (RVIDd), and aortic root diameter (AOD) were significantly larger (12–70%) in the athletes; RVIDd-, LVEDV-, SV-, and LVM-index were also significantly greater (8–46%). From FALL1 to SPR measurement periods, LVWd, RVWd, LVEDV, SV, IVS, and LVM-index increased significantly (7–18%) in the athletes. Over the same period of time, LVIDd, LAD, AOD, LVEDV, and SV measured in the five NA subjects increased significantly. In the athletes, LVIDs, RVIDd, IVS, LVPW, and LVM decreased significantly (5–30%) from the SPR to FALL2 measurement period. These data characterize the general nature of the cardiac hypertrophy noted in women BB athletes compared to NA controls and show that distinct changes in heart structure corresponding to different periods of the competitive season can occur in these athletes.  相似文献   

17.
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

18.
The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake (.VO(2max)) and distance travelled with peak oxygen uptake (VO(2peak)) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine .VO(2peak), and the MSFT on an indoor wooden basketball court. Mean ergometer .VO(2peak) was 2.66 litres . min(-1) (s = 0.49) and peak heart rate was 188 beats . min(-1) (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats . min(-1) (s = 11). Low to moderate correlations (rho = 0.39 to 0.58; 95% confidence interval [CI]: -0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer .VO(2peak). There was a mean bias of -1.9 beats . min(-1) (95% CI: -5.9 to 2.0) and standard error of measurement of 6.6 beats . min(-1) (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT .VO(2peak) values revealed a large mean systematic bias of 15.3 ml . kg(-1) . min(-1) (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml . kg(-1) . min(-1) (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats . min(-1); 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

19.
In this study, we examined the correlations between selected markers of isometric training intensity and subsequent reductions in resting blood pressure. Thirteen participants performed a discontinuous incremental isometric exercise test to volitional exhaustion at which point mean torque for the final 2-min stage (2min-torque(peak)) and peak heart rate peak (HR(peak)) were identified. Also, during 4 weeks of training (3 sessions per week, comprising 4?×?2?min bilateral leg isometric exercise at 95% HR(peak)), heart rate (HR(train)), torque (Torque(train)), and changes in EMG amplitude (ΔEMG(amp)) and frequency (ΔEMG(freq)) were determined. The markers of training intensity were: Torque(train) relative to the 2min-torque(peak) (%2min-torque(peak)), EMG relative to EMG(peak) (%EMG(peak)), HR(train) ΔEMG(amp), ΔEMG(freq), and %MVC. Mean systolic (-4.9 mmHg) and arterial blood pressure (-2.7mmHg) reductions correlated with %2min-torque(peak) (r?=?-0.65, P?=?0.02 and r?=?-0.59, P?=?0.03), ΔEMG(amp) (r?=?0.66, P?=?0.01 and r?=?0.59, P?=?0.03), ΔEMG(freq) (r?=?-0.67, P?=?0.01 and r?=?-0.64, P?=?0.02), and %EMG(peak) (systolic blood pressure only; r?=?-0.63, P?=?0.02). These markers best reflect the association between isometric training intensity and reduction in resting blood pressure observed after bilateral leg isometric exercise training.  相似文献   

20.
In this study, we examined the effects of three recovery intensities on time spent at a high percentage of maximal oxygen uptake (t90[Vdot]O(2max)) during a short intermittent session. Eight endurance-trained male adolescents (16 +/- 1 years) performed four field tests until exhaustion: a graded test to determine maximal oxygen uptake ([Vdot]O(2max); 57.4 +/- 6.1 ml x min(-1) . kg(-1)) and maximal aerobic velocity (17.9 +/- 0.4 km x h(-1)), and three intermittent exercises consisting of repeat 30-s runs at 105% of maximal aerobic velocity alternating with 30 s active recovery at 50% (IE(50)), 67% (IE(67)), and 84% (IE(84)) of maximal aerobic velocity. In absolute values, mean t90[Vdot]O(2max) was not significantly different between IE(50) and IE(67), but both values were significantly longer compared with IE(84). When expressed in relative values (as a percentage of time to exhaustion), mean t90[Vdot]O(2max) was significantly higher during IE(67) than during IE(50). Our results show that both 50% and 67% of maximal aerobic velocity of active recovery induced extensive solicitation of the cardiorespiratory system. Our results suggest that the choice of recovery intensity depends on the exercise objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号