首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
菱形是特殊的平行四边形,具有平行四边形的所有性质.另外,菱形还具有特别的性质:菱形的四条边都相等,对角线互相垂直,并且每条对角线平分一组对角.例1(2008年.宜宾)如图1,菱形ABCD中,E、F分别是BC、CD上的点,且BE=DF.求  相似文献   

2.
例1如图1,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.解析:命题者把等腰直角三角形与钝角三角形有机地组成一个梯形,令等腰直角三角形的斜边为梯形的下底,钝角三角形的最小边为  相似文献   

3.
有一类习题需要把不规则的图形补成规则的图形或熟悉的图形 ,从而使问题得到转化和解决 ,这种处理问题的方法称为“补形”。1 .补成直角三角形例 1 .已知 :如图 1 ,四边形 ABCD中 ,∠ A=∠ C=90°,AD=5,CB=3,∠ D=60°,求 CD的长。分析 :此题若按常规解法 ,需将 CD置于三角形中 ,若连结AC或 BD,不能充分利用已知条件 ,通过补形构造一个直角三角形可使问题得到解决。解 :延长 AB、DC相交于 E,∵∠A=90°,∠ D=60°,∴∠E=30°。∴ DE=2 AD=1 0 ,BE=2 CB=6。∴ CE=BE2 - BC2 =3 3。∴ CD=1 0 - 3 3。2 .补成等腰三角形例 2 …  相似文献   

4.
勾股定理是几何中十分重要的定理,它揭示了直角三角形三条边之间的数量关系,是直角三角形特有的性质.勾股定理的逆定理以三角形三边之间的数量关系来判断直角三角形的定理.它把数与图形统一起来,体现了数学的重要思想——数形结合思想.现就其具体应用解析如下:一、综合应用勾股定理与方程的有关知识例1如图1,将矩形ABCD(AB相似文献   

5.
一、延长根据已知条件 ,延长一条或几条线段 ,构成所需图形。例 1.已知 :四边形 ABCD中 ,∠ BAD=60°,∠ B=∠ D=90°,BC=11,CD=2。求 :对角线 AC的长。分析 :在 Rt△ ABC中 ,BC是已知的 ,若求出 AB的值 ,问题即可解决。设法把 AB放到另一个直角三角形中 ,延长 AD交 BC的延长线于点 E。这样 ,在 Rt△ CDE中 ,求出 CE值 ,然后得出BE值 ;在 Rt△ ABE中 ,得出 AB值 ;最后 ,在 Rt△ ABC中 ,求出AC的值。二、连结如连结多边形的对角线、三角形的中位线和梯形的中位线 ,从而可以利用它们的定理来解决问题。例 2 .在△ ABC中…  相似文献   

6.
<正>"直角三角形斜边上的中线长等于斜边长的一半",这个定理的重要性显然.这里举例说明如何构造直角三角形斜边的中线来帮助我们解题.例1(2014威海中考)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连结AF,若M为AF的中点,连结DM、ME,试猜想DM与ME的关系,并证明你的结论.  相似文献   

7.
直角三角形有一个非常重要的性质,这就是:直角三角形斜边上的中线等于斜边的一半。在解题中它起着传递线段之间关系的作用。如果在已知图形中出现直角三角形时,则可以作出该直角三角形斜边上的中线,从而有利于问题的解决。  例1 已知:△ABC中,BE⊥AC于E,CF⊥AB于F,M是BC的中点,N是EF的中点,连结MN。求证:MN⊥EF。NFEMCBA分析:如图,由已知条件可得△BFC与△BEC都是直角三角形,BC为其公共斜边。若连结MF,ME,可证FM=EM。证明略。  例2 如图,已知:在ABCD中,自钝角顶点A作AF⊥BC于F,BD交AF于点E,又知DE=2AB。求…  相似文献   

8.
题目已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC、DC上,BE=λBC,DF=μDC.若AE→·AF→=1, CE→·CF→=-2/3,则λ+μ值为_____.  相似文献   

9.
例1 如图1,把一张长为8 cm,宽为4 cm纸片矩形ABCD沿着EF折叠,点C恰好落在点A上,求AF的长, 解:因为四边形ABCD是矩形,AB =4,BC =8, 所以AB =CD =4,BC=AD=8,∠D =90°. 因为四边形AEFG是由四边形ECDF通过以EF为折痕折叠而得, 所以:GF=DF,AG =CD =4,∠G=∠D =90°.  相似文献   

10.
很多几何题的解决都依赖于添置辅助线 ,其中通过“补形” ,将一些不规则的图形转化为规则的基本图形 ,特别是转化为一些特殊的图形 ,然后再利用它们的特性来解题 ,充分体现了转化思想、化归方法的妙用 .一、巧用 60°角构造直角三角形或等边三角形例 1 已知 :如图 1 ,在四边形ABCD中 ,∠A =60°,∠B =∠D =90°,BC =1 ,AD =2 .求 :四边形ABCD的面积 .解  分别延长AB、DC ,设交于点E ,∵∠A =60° ,∠D =90°,∴∠E =30°.在直角三角形ADE中 ,∵AD =2 ,∴AE =4,DE =2 3,在直角三角形BCE中 ,∵BC =1 ,∴BE =3,S四边形ABCD…  相似文献   

11.
立体几何中许多问题涉及到作已知直线(线段)的平行线.对此,学生感到困难的是不知如何作平行线实现问题的转化,也有的学生随意作平行线以致无法计算.本文通过例题介绍两种作平行线段的常用方法。 1 利用三角形中位线定理进行平移 例1 (如图1所示)空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点.求证;MN和AD所成的角等于MN和BC所成的角。 分析:按异面直线所成角的定义,需平行移动线段AD使之与MN相交。由于M是AB中点,自然会想到用构造三角形连结中位线的方法。 证明:设BD中点为E,连结ME,由三角形中位线定理得;ME≤1/2AD 于是∠EMN就是MN与AD所成的角。 同理,连结NE易得∠ENM是MN与BC所成角.∵AD=BC ∴ME=EN 从而∠ENM=∠EMN 命题得证。 例2 (88年上海高考题)如图2所示,在棱长都相等的四面体A—BCD中,E,F分别为棱AD,BC的中点,连AF,CE,求异面直线AF、CE所成角的大小。 解:连结DF,取DF中点O,连EO,则EO=1/2AF。  相似文献   

12.
<正>1试题呈现例1(2017年武汉市中考数学第15题)如图1,在△ABC中,AB=AC=23(1/2),∠BAC=120°,点D、E都在边BC上,∠DAE=60°,若BD=2CE,则DE的长为___.本题以等腰三角形为基本图形,主要考查学生几何推理与几何计算能力.本题的图形虽然简单,但考查的知识点较多,主要涉及等腰三角形的性质、全等三角形的判定与性质、直角三角形的判定、勾股定理、图形的旋转变换或轴对称变换等知识点,综合性较强,对学  相似文献   

13.
一、把四边形问题转化为三角形问题来解例1 已知:四边形ABCD中,∠B=∠D=90°,AB=4·CD=2,∠A:∠C=1:2,求AD和BC的长. 解:延长BC、AD交于E.则△ABE,、△CDE为直角三角形.  相似文献   

14.
中点是几何图形中的特殊点,与中点有关的线段有三角形的中线、中位线、梯形的中位线等.利用中点很容易构造全等三角形、等腰三角形.在解题中,若能灵活运用它的相关性质,可使许多问题得到迅速解决.一、由中点联想三角形的中线例1如图1,△ABC中BD和CE是高,M为BC中点,P为DE的中点.求证:PM⊥DE.分析:由∠BDC=∠BEC=90°,M为BC中点,可得MD=ME=12BC,故△MDE为等腰三角形.又P为DE中点,根据等腰三角形底边上的中线也是底边上的高即可得证.二、由中点联想中位线例2如图2,梯形ABCD中,AD∥BC,AD相似文献   

15.
一、与平行四边形有关的问题例1(2012福建南平)如图,已知四边形ABCD是平行四边形,若点E,F分别在边BC,AD上,连接AE,CF,请再从下列三个备选条件中选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明.备选条件:AE=CF,BE=DF,∠AEB=∠CFD.我选择添加的条件是:(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)解析添加的条件可以是BE=DF(答案不唯一).证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵BE=DF,∴AF=CE,即AF=CE,AF∥CE.  相似文献   

16.
一、填空题1.在ABCD中,若∠A+∠C=140°,则∠C=°,∠B=°.2.对角线相等且互相平分的四边形是,对角线相等且互相垂直的平行四边形是.3.若菱形的两条对角线长分别为6cm,8cm,则这个菱形的周长为,面积为.4.如图1,矩形ABCD的两条对角线交于O点,∠AOB=60°,AB=2cm,则矩形的对角线长是,矩形的周长是.图1图25.如图2,四边形ABCD是正方形,延长BC至点E,使CE=AC.连结AE,AE交CD于F,那么∠AFC度数是.6.如图3,直线l是四边形ABCD的对称轴,且AB=CD.今给出下面四个结论:①AB∥CD;②CA⊥BD;③AO=OC;④AB⊥BC.其中正确的结论是.图3图4…  相似文献   

17.
<正>一、试题呈现(2021·安徽第23题).如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE//CD,DE//AB,作CF//AD交线段AE于点F,连结BF.(1)求证:△ABF≌△EAD;(2)如图2,若AB=9,CD=5,∠ECF=∠AED,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,求BE∶CE的值.二、基于核心素养的试题评价1. 图形似曾相识,  相似文献   

18.
直角三角形是一种特殊的三角形,它具有许多重要性质,特别是勾股定理及其逆定理在初中数学中有着广泛的应用,因此根据问题的图形特征,添加适当的辅助线,巧妙构造直角三角形,往往能够迅速找到解题途径.现略举几例解析如下:例1如图1,△ABC是边长为2的正三角形,E是AB边的中点,延长BC至D,使CD=BC,连接ED,求ED的长.解:连接AD,因为AC=CD,所以△ACD是等腰三角形,所以∠ADB=∠DAC,因为∠ACB=∠ADB ∠DAC,而∠ACB=60°,所以∠ADB=30°,又∠B=60°,所以∠BAD=90°,则△BAD是直角三角形,所以AD2=BD2-AB2=42-22=12,在Rt△EAD中…  相似文献   

19.
在进行有关梯形的边、角、面积等计算和论证问题时,常常需要添加辅助线,将梯形问题转化为三角形、平行四边形、矩形等特殊图形问题.下面介绍六种常见辅助线的添加方法.1平移一腰过梯形的一个顶点作一腰的平行线,通过平移腰,将梯形转化为三角形和平行四边形,利用三角形和平行四边形的性质,并结合题目条件,达到计算或证明的目的.图1例1如图1,在梯形ABCD中,AB∥CD,∠ADC=2∠B,AD=a,CD=b,求AB的长.解过D作DE∥BC,交AB与点E,则∠DEA=∠B,四边形DEBC是平行四边形,故BE=CD=b,∠EDC=∠B,由∠ADC=2∠B,得∠ADE=∠AED,因而AE=AD=a,所以AB=AE+BE=a+b.2平移两腰过梯形的上底上的一点作两腰的平行线,将梯形转化为一个三角形和两个平行四边形,再利用三角形和平行四边形的性质,结合题目条件,来证明(或计算).图2例2如图2,在梯形ABCD中,AD∥BC,M、N分别为上、下底的中点,且∠B+∠C=90°.求证:MN=12(BC-AD).证明过点M作ME∥AB交BC于点E,作MF∥CD交BC于点F,则∠MEC=∠B,∠MFB=∠C,∵∠B+∠C=90°,∴∠MEC+∠...  相似文献   

20.
平行四边形有许多重要的性质 ,灵活地应用这些性质 ,可以解决许多问题。因此 ,解题时应根据题目的特征 ,巧妙地将原图形进行加工 ,使之构成平行四边形 ,从而打开解题的思路。下面举例说明。例 1 .如图 1 ,在△ ABC中 ,AB= AC,在 AB上取D点 ,在 AC延长线上取 E点 ,使CE=DB,连结 DE交 BC于 G点 ,求证 :DG=GE。分析 :过 D点作 DF∥ AE,连结 CD、FE,得到四边形 DFEC,若四边形 DFEC为平行四边形 ,则命题得证。从 DF∥ AE,知∠ACB=∠ DFB,∵∠ B=∠ ACB,∴∠B=∠DFB,∴ DB=DF,再由已知 DB= CE,推知 DF=CE,∴四边形 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号