首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]对形如Y=asin x + bcos x(x∈R)的函数当化成形如y=(a2+b2)sin(x+φ),其中φ为非特殊角(π/12,π/6,π/4,π/3,(π)/12)的值域(最值)问题进行了探讨,其中两个例题对甲角所在象限及范围的选取各有不同.笔者的观点是,φ角所在象限及范围的选取略嫌繁琐,这不但不利于学生的掌握反而加重了学生的学习负担,经过思考,笔者认为其实Ч角可以始终选择在第一象限,且为锐角.接下来本文将改进后的解法展示如下,并再提供三种解法,供大家参考.  相似文献   

2.
求形如y=asin x+bco x且定义域为R的函数的值域(最值)可用特殊角(π/12,π/6,π/4,π/3,7π/12)的三角函数值来替换特殊值  相似文献   

3.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

4.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

5.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

6.
文[1]对形如y=asinx+bcosx(x∈R)的函数当化成形如y=√a^2+b^2sin(x+φ),其中φ为非特殊角(π/12,π/6,π/4,π/3,7π/12)的值域(最值)问题进行了探讨,其中两个例题对φ角所在象限及范围的选取各有不同.笔者的观点是,妒角所在象限及范围的选取略嫌繁琐,这不但不利于学生的掌握反而加重了学生的学习负担.经过思考,笔者认为其实φ角可以始终选择在第一象限,且为锐角.接下来本文将改进后的解法展示如下,并再提供三种解法,供大家参考.  相似文献   

7.
三角函数的最值问题,是一个比较复杂的问题,涉及范围广,方法典型独特,解法多种多样,又有很独特的技巧性,是三角函数的重点和难点内容之一.现把在教学中常见的几种类型及解法归纳如下,供参考.1.对于形如y=asinx+b或y=acosx+b(a≠0)的三角函数最值问题,可从中解出sinx或cosx,再利用正弦(或余弦)函数的有界性(|sinx|≤1或|cosx|≤1),便可求出原函数的最小值为b-|a|,最大值为b+|a|.【例1】求函数y=sin(x-π4)·cosx的最小值和最大值.解:∵y=12sin(2x-π4)+sin(-π4)=12sin(2x-π4)-24,∴ymin=-24-12=-2+24,ymax=-24+12=2-24.2.对于形如y=asinωx…  相似文献   

8.
在解含有绝对值的不等式时,通常我们去掉绝对值再求解,但在有一些问题中,添加绝对值也会取得求解的途径。下面给出两个例题加以说明。例1 求函数y=sinx+Z/sinx的值域。分析:在定义域x≠kπ(k∈Z)内,用“均值不等式”或用“函数的有界性”求此函数y的值域,均难奏效;若用“换元法”令t=sinx,则y=f(x)=t+Z/t,t∈E[-1,0)∪(0,1],转化由函数y=f(t)的单调性求值域,计算过程冗长;但由y=(sin~2x+2)/sinx两边添上绝对值,则可用“均值不等式”简明解出。解:由y=(sin~2x+2)/sinx得  相似文献   

9.
三角函数的最值问题是高考重要知识点和命题热点之一,下面就常见题型加以归纳总结,供同学们学习时参考. 类型1y=asinx+b(a≠0) 这是一类比较简单的函数.当x∈R,ymax=|a|+b,ymin=-|a|+b;当x有限制条件时,可结合正弦函数的图像求得函数的最值.例 1(1995年全国高考题)函数y=sin(x-π/6)cosx的最小值是_.解:y=sin(x-π/6)cosx =1/2[sin(2x-π/6+sin(-π/6)] =1/2sin(2x-π/6)-1/4,当sin(2x-π/6)=-1时,ymin=-3/4.  相似文献   

10.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

11.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

12.
<正>一、求函数值域或单调区间忽视定义域优先的原则例1已知(x+2)2+(y2+(y2)/4=1,求x2)/4=1,求x2+y2+y2的取值范围。错因分析:这类题有些同学可能会利用消元的方法将题目转化为有关x的函数求最值,但这样很容易忽视x、y满足约束条件  相似文献   

13.
一、选择题(每小题只有1个选项符合要求) 1.函数y=3-x-2的反函数是( ). A y=log1/3(x+2)(x>2); B y=log1/3x+2(x>2); C y=log1/3(x+2)(x>-2); D y=log1/3x+2(x>-2) 2.已知cos(π/6+α)=-4/5,cos(π/6-α)=3/5,π/3<α<5π/6,那么cos2α的值是( ).  相似文献   

14.
有很多同学误认为只有一次分式函数才可以用分离常数法求值域,其实不然.形如y=(af(x) b)/(cf(x) d)(a,c≠0) 的函数均可采用分离常数法求值域,函数可化成y=a/c (cb-ad)/(c[cf(x) d]') 如果令t=c[cf(x) d],则只需求出t的范围, 利用函数y=a/c (cb-ad)/t(t是自变量)的单调性,即可求出函数的值域.  相似文献   

15.
三角函数最值问题 ,其求法颇多 ,笔者根据多年的教学实践 ,将其化归为以下几种常见类型 ,供读者参考 .一、利用三角函数的值域 | sinx|≤ 1,| cosx|≤ 11. y =asinx +basinx +d或者 y =acosx +bccosx +d型例 1 求函数 y =3- 2 cosx2 +cosx 的最值 .解 :2 y +ycosx =3- 2 cosx,( 2 +y) cosx =3- 2 y,cosx =3- 2 y2 +y,∵ |cosx|≤ 1,∴ 3- 2 y2 +y ≤ 1,( 3- 2 y) 2≤ ( 2 +y) 2解得 13≤ y≤ 5,∴ ymax =5,ymin =13.点评 :此题利用反函数法求出 cosx的表达式后利用余弦函数的有界性求得最值 .2 .和积互化型例 2 求函数 y =sinx[sinx - sin…  相似文献   

16.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

17.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

18.
在高中数学中,函数有关值域和最值问题是一个重点也是一个难点问题,题型和解法也较多。本文就形如y=(ax b)~(1/2)±(cx d)~(1/2)的有关函数求最值问题做一探讨。  相似文献   

19.
文[1],[2]介绍了形如y=a(x-m)2+n2+bx的函数的最值的求法,并总结出该类函数的最值定理,文[3]介绍了一个2001年全国高中数学联赛题(见例1)的几何解法,笔者深受启发.本文旨在总结一类在各级数学竞赛中经常涉及的函数y=a(x-m)2-n2+bx的值域定理,并举例说明其应用.  相似文献   

20.
不少刊物的“问题选辑”中,有类似这样的一道选择题:函数y=Asin(ωx+ψ)在同一周期内,当x=π/4时,函数值是1,当x=7π/12时,函数的极小值是-2,则函数的解析式为( )。 (A)y=sin(x+π/6)-1; (B)y=2sin(π/2+π/3); (C)y=2sin(2x+π/3); (D)y=2sin(x/2-π/6)。这道题用“筛选法”易选(C)。但是,若用“直接法”则有可能选(C),也有可能选“无一正确”。在一次测验中,笔者将这道题改为求解题,要求写出详解。试后发现有如下几种情况:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号