首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended, open-ended inquiry. This study describes three teachers’ apprenticeship experiences with a research scientist. Our model included placing preservice teachers with scientists in expert/novice roles where each teacher would be actively engaged in constructing knowledge. From triangulating interview, laboratory notebook, and reflective summary data resources, we identified common themes from re-occurring statements. Findings indicated that participants acquired scientific skills and content knowledge; however, they expressed limited use of these in their classrooms.  相似文献   

2.
Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching informed by scientific literacy for all, it is important to take into account various, sometimes competing, science teacher and primary teacher Discourses. The aim of this paper is to explore how such Discourses are constituted in the context of learning to teach during a 1-year university-based Post Graduate Certificate of Education course. The empirical data consist of semi-structured interviews with 11 student teachers. The analysis identifies 5 teacher Discourses and we argue that these can help us to better understand some of the tensions involved in becoming a primary teacher with a responsibility for teaching science: for example, in terms of the interplay between the student teachers' own educational biographies and institutionally sanctioned Discourses. One conclusion is that student teachers' willingness and ability to embrace a Discourse of science education, informed by the aim of scientific literacy for all, may be every bit as constrained by their experience of learning science through ‘traditional schooling’ as it is by their confidence with respect to their own subject knowledge. The 5 Discourses, with their complex interrelations, raise questions about which identity positions are available to students in the intersections of the Discourses and which identity positions teacher educators may seek to make available for their students.  相似文献   

3.
This paper uses cultural historical activity theory to examine the interactions between the choices primary teachers make in the use of practical activities in their teaching of science and the purposes they attribute to these; their emotions, background and beliefs; and the construction of their identities as teachers of science. It draws on four case studies of science lessons taught over a term by four exemplary teachers of primary science. The data collected includes video recordings of science lessons, interviews with each teacher and some of their students, student work, teachers?? planning documents and observation notes. In this paper, we examine the reflexive relationship between emotion and identity, and the teachers?? objectives for their students?? learning; the purposes (scientific and social) the teachers attributed to practical activities; and the ways in which the teachers incorporated practical activities into their lessons. The findings suggest that it is not enough to address content knowledge, pedagogy and pedagogical content knowledge in teacher education, but that efforts also need to be made to influence prospective primary teachers?? identities as scientific thinkers and their emotional commitment to their students?? learning of science.  相似文献   

4.
Over the last two decades, science educators and science education researchers have grown increasingly interested in utilising insights from the sociology of scientific knowledge (SSK) to inform their work and research. To date, researchers in science education have focused on two applications: results of sociological studies of science have been used to define new areas of content, generally referred to as Nature of Science (NOS). This has included research into students’ understanding of the NOS, teachers’ understanding of the NOS, and inclusion (or exclusion) of NOS themes in curricula. A second vein of inquiry has been investigations that consider the classroom as a microcosm of scientific discourse and inquiry. Such research has included investigations of student‐to‐student and student‐to‐teacher interactions. In this paper, we present a third application for educational research – the investigation of teacher knowledge and practice as sociological phenomena. In addition to supporting scholarly research, we believe it can be a useful tool for illuminating the complexities of teaching that needs to be taken into account by policy makers and practitioners. In this paper, we provide a thematic review of concepts from the sociology of scientific knowledge, and their application to a case of teacher work.  相似文献   

5.
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.  相似文献   

6.
Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher’s interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.  相似文献   

7.
The theoretical construct of teacher noticing has allowed mathematics teacher educators to examine teacher thinking and practice by looking at the range of activities that teachers notice in the classroom. Guided by this approach to the study of teacher thinking, the central goal of this exploratory study was to identify what prospective science teachers notice when evaluating evidence of student understanding in another teacher's inquiry‐based unit. Our results are based on the qualitative analysis of 43 prospective teachers' evaluations of assessment evidence presented to them in the form of a video case and associated written artifacts. Analysis of our data revealed two major categories of elements, Task‐General and Task‐Specific, noticed by our study participants. Task‐General elements included attention to learning objectives, independent student work, and presentation issues and they often served to guide or qualify the specific inquiry skills that were evaluated. Task‐Specific elements included the noticing of students' abilities to perform different components of an investigation. In general, study participants paid attention to important general and specific aspects of student work in the context of inquiry. However, they showed preferential attention to those process skills associated with designing an investigation versus those practices related to the analysis of data and generation of conclusions. Additionally, their interpretations of assessment outcomes were largely focused on the demonstration of general science process skills; much less attention was paid to the analysis of the epistemological validity or scientific plausibility of students' ideas. Our results provide insights into the design of meaningful learning experiences for prospective teachers that elicit, challenge, and enrich their conceptions of student understanding in the context of inquiry. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:189–208, 2013  相似文献   

8.
理解科学本质是科学素养的内涵之一,是实现提高科学素养的科学教育目标的关键因素。现代科学本质观对科学知识、科学探究和科学事业进行了新的诠释。根据现代科学本质观,发展科学本质观下的科学教学理念,构建科学教育的三维目标,形成融入科学本质的科学教学策略,提升学生的科学本质观。  相似文献   

9.
Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students—fellows—with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the fellows, teachers, and school culture in the implementation of inquiry and the fellows’ conceptions of classroom inquiry versus that in their own research. Qualitative data were collected for two academic years. Overall, the classrooms shifted toward a more inquiry-oriented approach over the academic year. Several aspects of school culture influenced inquiry implementation. Fellows described their research as similar in overall structure but less constrained by known concepts, less guided by mentors, and more in-depth than that of secondary school students. The teacher-fellow scientist partnership is a potentially effective professional development model to create positive and lasting change within the science classroom.  相似文献   

10.
Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.  相似文献   

11.
In order for students to truly understand science, we feel that they must be familiar with select subject matter and also understand how that subject matter knowledge was generated and justified through the process of inquiry. Here we describe a high school biology curriculum designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. Since a primary goal of practicing scientists is to construct explanatory models to account for natural phenomena, involving students in the construction of their own explanatory models provides a major emphasis in the classroom. The students work in groups structured like scientific communities to build, revise, and defend explanatory models for inheritance phenomena. The overall instructional goals include helping students understand the iterative nature of scientific inquiry, the tentativeness of specific knowledge claims (and why they should be considered tentative), and the degree to which scientists rely on empirical data as well as broader conceptual and metaphysical commitments to assess models and to direct future inquiries.  相似文献   

12.
科学假说的信念成分及其对科学知识确定性的影响   总被引:1,自引:0,他引:1  
科学假说作为对问题的一种试探性和推测性的断言,有信念的成分。由于人们对世界的无知和认识必须有一个确信的支点,使科学研究只能采取并围绕具有信念性的假说形式展开。正是科学假说的猜测性,使得从其出发经过推理论证所获得的科学知识具有更大的不确定性。科学家的工作,就是在经验事实材料与构想的理论假说之间来回穿梭,并试图借助于理性逻辑建立二之间的必然联系。但是这种必然性是不存在的,科学家正是在揭示那虚假的必然性中推动科学发展的。  相似文献   

13.
This study was designed to investigate the relationship between students' views of the nature of scientific knowledge and their own learning of physics, and the evolution of this relationship over time. Twenty-three students enrolled in a physics course that emphasised laboratory work and discussions about the nature of science. Over a 15-month period, an extensive data base was established including student essays and interviews regarding their views of the nature of science and teaching and learning of physics. As part of an extensive data generation, students read a book on the epistemology of physics, wrote reflective essays, and subsequently discussed the epistemology of physics in class. Two intensive case studies are used to illustrate our understanding of students' views over time. Changes in students' views concerning the nature of scientific knowledge and of the science teaching and learning process, which were not always complementary, are described with the aid of a model. The findings of this research have direct relevance to the planning and implementation of science courses in which the development of understandings of the nature of science is an objective.  相似文献   

14.
There is, no doubt, untapped potential in using technological tools to enhance the understanding of science concepts. This study examines the potential by observing 7th and 8th grade middle school students’ (n = 23) use of portable data collection devices in a nine-week elective class, Exploring Technologies. Students’ use of the data collection devices and subsequent interactions were traced through audiocassette and videocassette recordings, field notes, and student artifacts. The culminating activity for the course was a scientific investigation that required students to use the technologies to answer student-selected research questions. To illustrate the use of technology as a mediatory tool, an inquiry investigation of three student groups is described. In examining the three groups of middle school students the researchers encountered specific evidence of technology maximizing students’ science learning. The students were able to use the portable data collection devices in their investigations as they discussed scientific ideas related to temperature and heat. The study’s findings indicated that the three student groups were able to use the tools to conduct scientific inquiry and engage in scientific discourse. Further research on instructional approaches that allow students to develop expertise by using technology as tools to construct knowledge about complex phenomena is encouraged.  相似文献   

15.
Drawing on their experiences as researchers and teacher educators, the authors discuss issues concerning student research that uses web-based references. This article describes ways the authors: 1) structure the inquiry process for student research, 2) help students manage the quantity of information, and 3) provide a model for analyzing the quality of information that students find on web sites. The web-site analysis form provided to students requires them to evaluate information provided about the “who, what, when, how, and where” of a web site. The authors conclude with a discussion of the ways this model helps students engage, organize, and publish information in ways that share the knowledge that the students have constructed and the process of their inquiry.  相似文献   

16.
This article focuses on the impact of a professional play that we developed in order to introduce elementary learners of an urban school to the research of a scientist working at a local university. The play was written in a way that might increase student understandings of the nature of science, scientific inquiry, the identity of scientists, and the work that scientists do. We collected pre-and post-play questionnaire responses and drawings of scientists from third and fourth grade students who attended the play. We also interviewed five of the ten teachers whose students attended the play. Findings indicated that most of these teachers felt strongly that their students had learned about scientific inquiry, the identity of scientists, and the work that scientists do as a result of attending the play. However, less than half of the student questionnaires and drawings of scientists indicated such growth as a result of the play. That being said, numerous students were able to tell us what they learned from the play and many questionnaire responses and drawings indicated such learning. Implications for partnerships between schools and university faculty from various disciplines in order to develop potentially impactful plays that portray authentic scientific research are discussed.  相似文献   

17.
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist–teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students’ learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers’ and scientists’ science teaching. A quasi-experimental design was used to understand the impact on students’ scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students’ scientific competency and a large effect on students’ scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.  相似文献   

18.
生命科学史的教育价值   总被引:1,自引:0,他引:1  
生命科学史揭示了人们思考和解决生物学问题的思想历程,展示了生命科学各个学科形成的历史以及各个学科之间的联系,揭示了自然科学的本质,揭示了每一个知识点的产生过程就是一个探究的过程,展示了在探究知识的过程中科学家之间的合作以及科学家所持观点之间的碰撞和论争,展示了成功的实验与选择合适的实验对象之间密切相关,呈现了科学家的科学态度、科学精神和科学世界观。生命科学史对于培养学生的生物学素养乃至科学素养具有积极的意义,在探究性学习中将发挥重要的作用。  相似文献   

19.
Summer science programs held in university research facilities provide ideal opportunities for pre-college students to master new skills and renew, refresh, and enrich their interest in science. These types of programs have a positive impact on a student's understanding of the nature of science and scientific inquiry and can open a youngster's eyes to the many possible career opportunities in science. This paper describes a study of high school students enrolled in the Summer Science Academy program at the University of Rochester that investigates the program's impact on students' knowledge of laboratory skills, as well as the impact on student interest in pursuing a career in science. Students' exposure to advanced laboratory techniques and their interaction with professional scientists provided them with a very positive hands-on experience. Students who attended the program felt more confident in their ability to use sophisticated laboratory skills and that the Summer Science Academy program provided a positive influence on their performance in advanced science courses, as well as their desire to pursue a career in science.  相似文献   

20.
General scientific literacy includes understanding the grounds on which scientific claims are based. The measurements scientists make and the data that they produce from them generally constitute these grounds. However, the nature of data generation has received relatively little attention from those interested in teaching science through inquiry. To inform curriculum designers about the process of data generation and its relation to the understanding of patterns as these may arise from graphs, this 5-year ethnographic study in one advanced research laboratory was designed to investigate how natural scientists make decisions about the inclusion/exclusion of certain measurements in/from their data sources. The study shows that scientists exclude measurements from their data sources even before attempting to mathematize and interpret the data. The excluded measurements therefore never even enter the ground from and against which the scientific phenomenon emerges and therefore remain invisible to it. I conclude by encouraging science educators to squarely address this aspect of the discovery sciences in their teaching, which has both methodological and ethical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号