首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文利用一个三角恒等式证明三角形的面积公式b,c为△ABC的三边长,p=1/2(a+b+c)是半周长,S是面积. 证明:如图1,⊙I是△ABC的内切圆,半径为r.在Rt△IFA中.tan A/2=IF/FA=r/(p-a)同理tanC/2=r/(p-b), tanC/2=r/(p-c). 证明中要用到三角恒等式tanA/2·tanB/2  相似文献   

2.
很多教辅资料上都有这样一道习题: 在锐角△ABC中,求证tanA+tanB+tanC=tanAtanBtanC. 这是一道很平常的题,证法如下:因为△ABC为锐角三角形,所以tanA,tanB,tanC,tan(A+B)都有意义.又因为A+B=π-C,所以tan(A+B)=-tanC,所以tanA+tanB+tanC  相似文献   

3.
解析几何主要是通过计算来研究曲线的方程或曲线的几何性质 ,如果我们能善于应用平面几何图形的基本性质特征 ,有时可使问题容易解答 .1 使用几何特征可以简化解题过程图 1例 1 直线 l:y=k(x+2 2 )与圆 O:x2 +y2 =4相交于 A,B两点 ,O是坐标原点 ,△ ABO的面积为S.(1)求函数 S= f(k) ;(2 )求 S的最大值 ,并求取得最大值时 k的值 .解  (1)原点 O到直线 l的距离为 d=2 2 |k|1+k2 ,弦长 |AB|=2 |OA|2 - d2 =24 - 8k21+k2 ,S =12 |AB |· d =12 · 24 - 8k21+k2 · 2 2 |k|1+k2 =4 2· k2 (1- k2 )1+k2 .∵ |AB|>0且 S>0 ,∴ - 1相似文献   

4.
一、求值例1 在△ABC中,已知tanA,tanB是方程3x2+8x- 1=0的两根,求tanC的值. 解由韦达定理得∵A+B+C=180°∴C=180°-(A+B). ∴tanC=tan[180°-(A+B)]=-tan(A+B)=-(-2)=2. 例2 已知△ABC的三个内角满足:2B=A+C,  相似文献   

5.
设Smn=2n-11-2m2n-22+…+nm·(-1)n+1·nn,则对任意非负整数m、k有Sm3k=Amkm+Am-1km-1+…+A1k;Sm3k+1=Bmkm+Bm-1km-1+…+B1k+1;Sm3k+2=Cmkm+Cm-1km-1+…+C1k+3-2m;其中Ai,Bi,Ci(1≤i≤m)为待定常数  相似文献   

6.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

7.
我们知道数列通项 an 具有如下两个常见的基本变形式 :差式变形式 :an=(an- an-1 ) (an+ 1 - an-2 ) +…+(a2 - a1 ) +a1 . 1商式变形式 :an=anan-1· an-1 an-2·…· a3 a2· a2a1·a1 . 21式可以应用于求递推关系式为 :an+ 1 =an+g(n)型数列的通项公式 ;2式可以应用于求递推关系式为 :an+ 1 =f(n)× an型数列的通项公式 .而对求递推关系式为 :an+ 1 =kan+g(n) (k≠ 1 ) ( )型的通项公式就失效 .近期有杂志刊文介绍对 an+ 1 =kan+g(n) (k≠1 )型的通项公式求法 .不外乎两种方法 :其一是将an+ 1 =kan+g(n) (k≠ 1 )转化为 :an- h(n) =k{ an…  相似文献   

8.
定理 在△ABC中 ,∠A =n∠B ,a、b、c分别为∠A、∠B、∠C的对边 ,a、b、c的关系记为 fn=fn(a ,b,c) =0 ,则有 (记N =14( 2n + ( -1 ) n +1+ 1 )fn=∑nk =1( -1 ) k- 1C2k - 1n b[4a2 c2 -(a2 -b2 +c2 ) 2 ]k - 1(a2 +c2 -b2 ) n- 2k+1-a( 2ac) n - 1.证明 :由 (cosB +isinB ) n =∑nk=0 Ckncosn -kB·(isinB) k=cosnB +isinnB ,得 sinnB =∑Nk=1C2k- 1n ( -1 ) k- 1sin2k- 1B ·cosn - 2k+1B .①又由sinAsinB=sinnBsinB =ab ,sinnB =absinB ,代入①即得∑Nk=1( -1 ) k - 1C2k- 1n sin2k- 2 B·cosn - 2k+1B -a =0 .②由余…  相似文献   

9.
由于探索性问题能够有效地考查学生的数学素质 ,因而成为高考命题的热点 .下面仅就数列中探索性问题的求解策略作些归纳 ,以期抛砖引玉 .一、利用公式直接求解例 1 是否存在常数a ,b ,c使等式 1·n+ 2 · (n -1) +… + (n -1) ·2 +n·1=an3+bn2 +cn对任意的n∈N 恒成立 ?证明你的结论 .解 对等式左边求和 .∑nk=1k(n+ 1-k)=∑nk=1[k(n+ 1) -k2 ]=(n+ 1) ∑nk=1k -∑nk=1k2=n(n+ 1) 22 -n(n+ 1) (2n + 1)6=n3+ 3n2 + 2n6.比较系数可得a=16,b=12 ,c=13 .二、先用特值探路 ,再用数学归纳法证明对于例 1,分别令n =1,2 ,3 ,代入等式 ,得a +b+…  相似文献   

10.
命题均可表为任一勾股数组(a,白,c)(a(b)(a。,a。+k,cn),其中a。二无(e矛。、:+e少。、,.2+…+C矛J十:·Zn一‘)c。=k(C绪n十;+C萝。、1·2+…+C矛J草亡.zn).(k,n任N)证明因a<白,可设b=a+k(k任N).因aZ+(a+k)“=cZ:·(,+窄)2=一工,一Zk训丝十无一(华)‘‘)(1十令-二~1。因(1+侧丁)““辛=(一1)么n十‘=一1,.(1一侧玄)2”+‘ 可令十侧2kc=(1+侧丁)2“+‘,+毕一哗一“一(l一训厄一户·1 K尤(n任N)。。日、。k。,月‘,二、。。_贝tJI苛a二丁比、上卞V乙)一’ q+(1一训丁)Zu宁‘一2〕C〔(1+侧丁)之”+1k一︷4 一(1一训丁):n+,展开整理即…  相似文献   

11.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

12.
例1 已知|a|=1,|b|=2,a与b的夹角为120°,求使a+kb与kb+b的夹角为锐角的实数 k的范围.错解 (a+kb)·(ka+b)=ka2+(k2+1)a·b+kb2=k+(k2+1)×1×2×cos120°+4k=-k2+5k-1.由题意得-k2+5k-1>0,  相似文献   

13.
一、三角函数1.(全国高考题)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4. (Ⅰ)求cosA+cotC的值; (Ⅱ)设(?)·(?)=3/2,求a+c的值. 解析(Ⅰ)由cosB=3/4得sinB=(1-(3/4)2)~(1/2)=7~(1/2)/4 由b2=ac及正弦定理得sin2B=sinAsinC. 于是cosA+cotC=1/tanA+1/tanC =cosA/sinA+cosC/sinC=(sinCcosA+cosCsinA)/sinAsinC  相似文献   

14.
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.若角α和角β的终边关于x轴对称,则α和β的关系是()(A)α+β=2kπ(k∈Z)(B)α-β=2kπ(k∈Z)(C)α+β=kπ(k∈Z)(D)α-β=kπ(k∈Z)2.若a=(1,1),b=(1,-1),c=(-1,2),则c=()(A)-12a+23b(B)12a-23b(C)32a-21b(D)-32a+21b3.在&ABC中,若∠A=60°,边AB的长为2,&ABC的面积为23,则BC边的长为()(A)7(B)7(C)3(D)34.已知边长为1的正三角形ABC中,AB=c,BC=a,CA=b,则a·b+b·c+c·a的值为()(A)-32(B)0(C)32(D)35.化简sin(s2inαα+β)-…  相似文献   

15.
竞赛专栏     
有奖解题擂台(74)浙江湖州双林中学李建潮(邮编:313012)题证明或否定∑nk=1sec(22kn-+11)π=(-1)n·2[n2+1]。其中,n∈N*,符号[x]表示实数x的最大整数部分。(注第一位完整且正确的应征解答者授于奖金30元。)一类有限和的下界估计———兼擂题(70)解答江西省宁都县固厚中学张树生(邮编:342814)擂题(70)(刘永春提供):1证明:∑2004k=11k>1306;2证明:∑2004k=1(1k)21>1465186;3证明:∑2004k=1(1k)31>1145546。本文给出擂题(70)的证明。证明1如图所示:1k=S矩形AkBkCk+1Ak+1=S△BkBk+1Ck+1+梯形AkBkBk+1Ak+1-S阴影)+影=21(1k-k1+1)+[21(1k+k…  相似文献   

16.
x的一次方程与x的一元二次方程都是关于x的方程,区别只是x的一元二次方程多了一个隐含条件,如二次项系数不为零,然而这个不明显的条件,导致很多同学把关于x的方程的实根误认为是关于x的一元二次方程的实数根。为避免这种错误,特举几例加以说明。例1k为何值时,关于x的方程2(k+1)x2+4kx+2k-1=0有实数根?解:若方程2(k+1)x2+4kx+2k-1=0是一元二次方根,则k应满足:2(k+1)≠0△=(4k)2-4×2(k+1)·(2k-1)≥0kk≠≤1-1k≤1且k≠-1若方程2(k+1)x2+4kx+2k-1=0是一元一次方程,则有2(k+1)=0即k=-1·当k=-1时,原方程为-4x-3=0,方程有实数根x=-43,综合两种…  相似文献   

17.
1.(湖北,理14)(x2+1x+2)5展开式中整理后的常数恒为.解法1:把三项看作两项展开2+x2+1x5,则Tr+1=Cr525-r2x2+1xr(0≤r≤5,r∈N).假如第r+1项恒为常数项,则Tr+1=Cr525-r2Ckrx2r-k1xk=Cr5Ckr2k-r25-r2xr-2k(0≤k≤r,k∈N),则r-2k=0r=2k(r,k∈N),∴r=0,k=0,r=2,k=1,r=4,k=2,常数恒为C05252+C25C12212+C45C242122-2=6322.解法2:x2+1x+25=x2+22x+22x5=[(x+2)2]5(2x)5=(x+2)10(2x)5.对于二项式(x+2)10中,Tr+1=Cr10·x10-r·(2)r要设列常数项需10-r=5,则r=5,则常数项为C510(2)525=6322.解法3:不妨设x>0,则x2+1x+25=x22+1x2+25=x2+1x25=x2+1x…  相似文献   

18.
一、化简代入技巧例1先化简,再求值。ba-b·a3+ab2-2a2bb3÷b2-a2ab+b2,其中a=23,b=-3。解:待求式=ba-b·a(a-b)2b3·b(b-a)=-ab=-23÷(-3)=29。二、求值代入技巧例2已知a(a-2)-(a2-2b)=-4,则a2+b22-ab=。解:∵a(a-2)-(a2-2b)=-4,∴a2-2a-a2+2b=-4,∴-2(a-b)=-4,a-b=2,故a2+b22-ab=(a-b)22=222=2。三、换元代入技巧例3如果x:y:z=1:3:5,那么x+3y-zx-3y+z=。23,则。解:设x=k,y=3k,z=5k,则x+3y-zx-3y+z=k+9k-5kk-9k+5k=5k-3k=-53。四、和积代入技巧例4已知x=樤3+樤2,y=樤3-樤2,试求2xyx2-y2+xx+y-yy-x的值。解:由题设得,x+y=2樤3,x-y=2樤2,xy=1…  相似文献   

19.
三、C(s~m,r)数的三组求和公式引理1.任一和式f(x)=∑a_kx~k,记w为1的n次根 (w=cos(2π)/n+isin(2π)/n-e~(i(2π)/n)), 则对任二整数n>k≥0,有 a_kx~k+a_(k+u)x~(k+k)+a_(k+2n)x~(k+2n)+… =(1/n)sum from j=0 to n-1 (w~(-jk)·f(w~j,x).(A)  相似文献   

20.
题目:当k为何值时,方程(k2-1)x2+2(k+1)x+1=0有实数根?四位同学采取了如下四种不同的解法。甲的解法:∵△=[2(k+1)]2-4(k2-1)=8k+8.∴当8k+8>0,即k>-1时,方程有实数根。乙的解法:∵△=8k+8,∴当8k+8≥0,即k≥-1时,方程有实数根。丙的解法:∵△=8k+8,依题意有:k2-1≠08k+8≥0解之得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有实数根。丁的解法:分别讨论k2-1≠0与k2-1=0两种情:(1)设k2-1≠0,依题意有k2-1≠08k+8≥0解得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有两个实数根;(2)当k=1时,原方程为4x+1=0,有一个实数根;(3)当k=-1时,原方程为0·x+1=0,方程…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号