共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a novel distributed Kalman filter consisting of a bank of interlaced filters is proposed for a signal model whose dynamic equation and measurement equation are coupled. Each of the interlaced filters estimates a part of state rather than the global state using its and its neighbor information, which is different from other distributed filters already existed (e.g., distributed Kalman filter based on diffusion strategy or consensus strategy, distributed fuzzy filter and distributed particle filter with Gaussian mixer approximation, etc). This relieves the calculation and communication burden in networks. In addition, the proposed distributed Kalman filtering contains no consensus strategies, which is useful in some cases since consensus usually requires an infinite number of iterations. 相似文献
2.
3.
Jing Wang Mengping Xing Yonghui Sun Jianzhen Li Junwei Lu 《Journal of The Franklin Institute》2019,356(17):10155-10178
This paper is concerned with the problem of event-triggered dissipative state estimation for Markov jump neural networks with random uncertainties. The event-triggered mechanism is introduced to save the limited communication bandwidth resource and preserve the desired system performance. The phenomenon of randomly occurring parameter uncertainties is considered to increase utilizability of the proposed method. To describe such a randomly occurring phenomenon, some mutually independent Bernoulli distributed white sequences are adopted. A mode-dependent state estimator is designed in this paper, which ensures that the estimation error system is extended stochastically dissipative. By using the Lyapunov–Krasovskii functional approach and an optimized decoupling approach, an expected state estimator can be built by solving some sufficient conditions. Two numerical examples are presented to demonstrate the correctness and effectiveness of the proposed method. 相似文献
4.
Xiang-Gui Guo Hong-Jian Li Jun-Jie Zhao Wei-Wei Che 《Journal of The Franklin Institute》2019,356(9):4842-4858
This paper investigates the expected static group synchronization problem of the second-order multi-agent systems via pinning control. For directed communication topology with spanning tree, based on Gershgorin disk theorem and the matrix property, a static pinning control protocol with fixed gains is first introduced and some sufficient and necessary static group synchronization criteria are also established. It is worth mentioning that a rigorous proof is also given that only one pinning node is needed to guarantee static group synchronization, which could be inferred that our protocol might be more economical and effective in large scale of multi-agent systems. Then, for weakly connected directed communication topology with nodes of zero in-degree, an adaptive pinning control applied to the node with zero in-degree is also proposed to achieve static group synchronization. Finally, the efficiency of the proposed protocols is verified by two simulation examples. 相似文献
5.
This paper mainly investigates the fault detection problem for nonlinear multi-agent systems with actuator faults. For fault detection, a fixed-time observer is proposed by employing auxiliary variable received from neighbor agents. Then, with the aid of the observer, a residual vector is introduced by the auxiliary variable to detect the faults occurring on any followers, and each observer can estimate the whole state of followers. Moreover, the convergence time is dependent on the parameters of the designed observer and independent of initial condition of system state. Finally, the theoretical result is verified by a simulation example. 相似文献
6.
In this paper, we consider the parameter estimation issues of a class of multivariate output-error systems. A decomposition based recursive least squares identification method is proposed using the hierarchical identification principle and the auxiliary model idea, and its convergence is analyzed through the stochastic process theory. Compared with the existing results on parameter estimation of multivariate output-error systems, a distinct feature for the proposed algorithm is that such a system is decomposed into several sub-systems with smaller dimensions so that parameters to be identified can be estimated interactively. The analysis shows that the estimation errors converge to zero in mean square under certain conditions. Finally, in order to show the effectiveness of the proposed approach, some numerical simulations are provided. 相似文献
7.
Qing Wang Jin-Liang Wang Yan-Li Huang Shun-Yan Ren 《Journal of The Franklin Institute》2018,355(14):6597-6616
The generalized lag synchronization of multiple weighted complex dynamical networks with fixed and adaptive couplings is investigated in this paper, respectively. By designing appropriate controller, several synchronization criteria are presented for multiple weighted complex dynamical networks with and without time delay based on the selected Lyapunov functional and inequality techniques. Moreover, an adaptive scheme to update the coupling weights is also developed for ensuring the generalized lag synchronization of multiple weighted complex dynamical networks with and without time delay. Finally, two numerical examples are provided in order to validate effectiveness of the proposed generalized lag synchronization criteria. 相似文献
8.
This paper considers the problem of dissipative filtering problem for singular Markov jump systems with time-varying delay and generally uncertain transition rates. Firstly, by tuning the improved integral inequality and Wirtinger-based integral inequalities, a sufficient condition is derived to guarantee that the considered system is regular, impulse-free, stochastically stable with the dissipation performance. Then, based on the derived condition, and applying linear matrix inequalities (LMIs) techniques, the filter is synthesized. Finally, some numerical examples are given to illustrate the effectiveness of the obtained theoretic results. 相似文献
9.
This paper proposes a novel model free adaptive iterative learning control scheme for a class of unknown nonlinear systems with randomly varying iteration lengths. By applying the dynamic linearization technique along the iteration axis, such systems can be transformed into iteration-depended time varying linear systems. Then, an improved model free adaptive iterative learning control scheme can be constructed only using input and output data of the system. From the rigorous theoretical analysis, it is shown that the mathematical expectation of tracking errors converge to zero as iteration increases. This design does not require any dynamic information of the ILC systems and prior information of randomly varying iteration lengths. An illustrative example verifies the effectiveness of the proposed design. 相似文献
10.
Lianghong Peng Xianghui Cao Hongbao Shi Changyin Sun 《Journal of The Franklin Institute》2018,355(14):6859-6876
In cyber-physical systems (CPS), cyber threats emerge in many ways which can cause significant destruction to the system operation. In wireless CPS, adversaries can block the communications of useful information by channel jamming, incurring the so-called denial of service (DoS) attacks. In this paper, we investigate the problem of optimal jamming attack scheduling against remote state estimation wireless network. Specifically, we consider that two wireless sensors report data to a remote estimator through two wireless communication channels lying in two unoverlapping frequency bands, respectively. Meanwhile, an adversary can select one and only one channel at a time to execute jamming attack. We prove that the optimal attack schedule is continuously launching attack on one channel determined based on the system dynamics matrix. The theoretical results are validated by numerical simulations. 相似文献
11.
Feng Ding Huibo Chen Ling Xu Jiyang Dai Qishen Li Tasawar Hayat 《Journal of The Franklin Institute》2018,355(8):3737-3752
Mathematical models are basic for designing controller and system identification is the theory and methods for establishing the mathematical models of practical systems. This paper considers the parameter identification for Hammerstein controlled autoregressive systems. Using the key term separation technique to express the system output as a linear combination of the system parameters, the system is decomposed into several subsystems with fewer variables, and then a hierarchical least squares (HLS) algorithm is developed for estimating all parameters involving in the subsystems. The HLS algorithm requires less computation than the recursive least squares algorithm. The computational efficiency comparison and simulation results both confirm the effectiveness of the proposed algorithms. 相似文献
12.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example. 相似文献
13.
14.
Yishi Liu Xiwang Dong Zhang Ren Jonathan Cooper 《Journal of The Franklin Institute》2019,356(7):3849-3868
In this paper, a constrained control scheme based on model reference adaptive control is investigated for the longitudinal motion of a commercial aircraft with actuator faults and saturation nonlinearities. Actuator faults and constraints are both important factors adversely affecting the stability and performance of flight control systems. An adaptive adjustment law based on Lyapunov function is utilized to adjust the fault-tolerant control law. Both additive and multiplicative faults are considered in the designed controller to deal with the three types of actuator faults: locked in place, loss of effectiveness, and bias. Moreover, different techniques are implemented in the basic and fault-tolerant controller to anti-windup. Proofs for the stability of the two modified controllers which improve the performance of control system operating in the presence of actuator faults and saturations are proposed. Finally, a numerical example of the anti-windup fault-tolerant controller for a commercial aircraft is demonstrated. The stability and performance improvements can be accrued with the presented fault-tolerant control scheme. 相似文献
15.
Towards enhancing stacked extreme learning machine with sparse autoencoder by correntropy 总被引:1,自引:0,他引:1
Xiong Luo Yang Xu Weiping Wang Manman Yuan Xiaojuan Ban Yueqin Zhu Wenbing Zhao 《Journal of The Franklin Institute》2018,355(4):1945-1966
The stacked extreme learning machine (S-ELM) is an advanced framework of deep learning. It passes the ‘reduced’ outputs of the previous layer to the current layer, instead of directly propagating the previous outputs to the next layer in traditional deep learning. The S-ELM could address some large and complex data problems with a high accuracy and a relatively low requirement for memory. However, there is still room for improvement of the time complexity as well as robustness while using S-ELM. In this article, we propose an enhanced S-ELM by replacing the original principle component analysis (PCA) technique used in this algorithm with the correntropy-optimized temporal PCA (CTPCA), which is robust for outliers rejection and significantly improves the training speed. Then, the CTPCA-based S-ELM performs better than S-ELM in both accuracy and learning speed, when dealing with dataset disturbed by outliers. Furthermore, after integrating the extreme learning machine (ELM) sparse autoencoder (AE) method into the CTPCA-based S-ELM, the learning accuracy is further improved while spending a little more training time. Meanwhile, the sparser and more compact feature information are available by using the ELM sparse AE with more computational efforts. The simulation results on some benchmark datasets verify the effectiveness of our proposed methods. 相似文献
16.
Voice coil actuators (VCAs) are widely used for motion control applications that require high precision and fast acceleration. However, they have one disadvantage of short travel ranges typically on the order of centimeters. To overcome this disadvantage, this paper employs an existing concept called dual-stage actuation and combines a linear VCA with a low-cost dc-motor (DCM) to construct a linear dual-stage actuation (DSA) positioning system, which extends the travel range as large as that provided by the DCM while retaining the positioning accuracy offered by the VCA. For this setup, proper controllers are crucial to achieve the desired performance. Hence, we first identify the DSA model and investigate the interaction force between the VCA and DCM stage. Next, robust controllers are specifically designed for the DCM and VCA stage, respectively. Finally, experiments are carried out to verify the robust tracking performance of the developed linear DSA positioning system. It is demonstrated that the developed DSA positioning system offered a cost-effective solution to extending the working range of the existing VCA whilst retaining the positioning accuracy. 相似文献
17.
This paper presents a novel approach to stabilize a class of nonlinear systems with state constraints. The motivation behind this study is the need to develop a stabilizing state feedback controller that does not require the knowledge of Lyapunov function and can regulate the states to the equilibrium while meeting the constraints. By using an integration of two relatively new tools: immersion and invariance (I&I) theory and viability theory, a sufficient condition for stability and stabilizability of a general nonlinear affine system with state constraints is derived; Then, the related results are exploited to stabilize a class of nonlinear system in feedback form and with state constraints represented by inequalities and the viable I&I stabilizing state feedback controller is obtained constructively. Further, an application to a nonlinear aero-engine model with the temperature constraint is given to illustrate the applicability and the effectiveness of the proposed method. Finally, a comparative simulation is presented, highlighting the advantages of the viable I&I controller. 相似文献
18.
Xian Zhang Xinxiao Liu Yantao Wang Xin Wang 《Journal of The Franklin Institute》2019,356(7):4043-4060
In this paper, we will investigate the necessary conditions, described by the Lyapunov matrix, for the robust exponential stability for a class of linear uncertain systems with a single constant delay and time-invariant parametric uncertainties, which are some generalizations of the existing results on uncertain linear time-delay systems. As a medium step, several pivotal properties of parameter-dependent Lyapunov matrix are proposed, which set up the relationships between fundamental matrix and Lyapunov matrix for the considered system. In addition, to calculate the parameter-dependent Lyapunov matrix, we introduce the differential equation method and the Lagrange interpolation method, respectively. Furthermore, it is noted that the proposed necessary conditions can be used to estimate the range of time delay, when the linear uncertain time-delay system is robust exponential stability. Finally, the validity of the obtained theoretical results is illustrated via numerical examples. 相似文献
19.
In this paper, a data-driven covert attack strategy is proposed for a class of closed-loop cyber-physical systems. Without the parameters of the system plant and the nominal controller, the attacker can only use the intercepted input and output data of the nominal system. The injected input attack signals are designed based on the subspace predictive control method, which can deviate the real outputs to the expected attack references in a future time horizon. Meanwhile, by injecting the designed output attack signals for compensation, the attack cannot be detected by the anomaly detector. The simulation results of an irrigation canal system illustrate the effect of the proposed strategy with satisfactory performances. 相似文献
20.
This paper studies the problem of designing a resilient control strategy for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. By constructing an H∞ observer-based periodic event-triggered control (PETC) framework, the relationship between the event-triggering mechanism and the prediction error is obtained. Then, inspired by the maximum transmission interval, the input-to-state stability of the closed-loop system is proved. Compared with the existing methods, a Zeno-free periodic PETC scheme is designed for a continuous-time CPS with the external disturbance and measurement noise. In particular, the objective of maximizing the frequency and duration of the DoS attacks is achieved without losing robustness. Finally, two examples are given to verify the effectiveness of the proposed approach. 相似文献