首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于Geo Gebra软件环境支持下,从几何作图、方程绘图、函数析图、曲线性质等方面研究了平面内到两定点距离的倒数和为定值的动点的轨迹曲线.  相似文献   

2.
求曲线的轨迹方程是解析几何研究的两大问题之一,也是每年高考解析几何的必考内容之一,其解法灵活多样,对学习者有一定难度.本文集结了高中数学曲线轨迹方程的几种常用解法,希望能给同学们带来一些帮助.  相似文献   

3.
求动点的轨迹方程的基本指导思想,就是充分利用题设中的几何条件,通过"解析化"将其转化为代数方程,以达到用代数方法研究几何问题的目的.  相似文献   

4.
谢生中 《青海教育》2004,(11):33-34
~~轨迹方程的求法@谢生中  相似文献   

5.
李可进 《高中生》2011,(2):18-19
直接法 直接法是将动点满足的几何条件或者等量关系直接坐标化,列出等式化简,主要用于动点具有的几何条件比较明显时.  相似文献   

6.
掌握求曲线轨迹方程的方法,能够更好地帮助我们学好解析几何。求曲线轨迹方程常见的方法主要有直译法、定义法等五种。  相似文献   

7.
一、从直观图形分析轨迹范围例1.如图1直角△ABC的两直角边分别是a,b(a>b),A,B两点分别在x轴正半轴和y轴的正半轴上滑动,求顶点C的轨迹方程.解:设C(x,y),由点O,A,C,B共圆,知∠COA=∠CBA,∴xy=ab,即y=bx.a从直观分析,易知C点的轨迹不是一条直线.考察A、B处于两极端的位置时C点的坐标.当A重合于原点时,C点横坐标x=aba2+b2√;当B重合于原点时,C点横坐标x=a2a2+b2√.故C点的轨迹方程应是y=bax,aba2+b2√≤x≤a2a2+b2√).二、从参数变化分析轨迹范围例2.已知关于x的二次方程x…  相似文献   

8.
轨迹是曲线的基本问题,求曲线的轨迹方程是高考的重点内容.灵活地选择其方法,有助于提高解题的速度和准确度.下面通过实例说明其基本的求法.  相似文献   

9.
正人教版数学必修2第四章的习题4.1 B组3个习题(P124)都是求动点的轨迹方程,可见轨迹方程的求法这一知识点的重要性,从近几年高考命题来看,求动点的轨迹方程是常考题型,主要以解答题的形式出现,着重考查分析问题,解决问题的能力,对逻辑思维能力、运算能力也有一定的要求,我们结合教材中的习题和2013年的高考题,来探究动点的轨  相似文献   

10.
为帮助学生系统性掌握曲线轨迹方程问题的解题方法,本文结合实际问题,讲解定义法、直接法、待定系数法、参数法在解题中的运用,以期提高学生的解题效率.  相似文献   

11.
求曲线的轨迹方程是解析几何的两个基本问题之一,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量问的关系.  相似文献   

12.
13.
14.
任光庆 《数学教学》2004,(8):31-33,8
在解析几何的教学中,点、线、曲线按一定位置、一定条件、一定结构可形成特有的轨迹问题.这些轨迹的变化往往是巧妙而有趣味性的.下面本人通过折纸实验设计,将传统实物折纸实验和电脑模拟实验结合起来,让学生体会到“做”数学、“学”数学的乐趣.学生经过思  相似文献   

15.
一、求曲线轨迹方程的步骤(1)建立直角坐标系,设动点坐标M(x,y);(2)列出动点M(x,y)满足的条件等式;(3)化简方程;(4)验证(可以省略);(5)说明方程的轨迹图形,补漏和去掉增多的点.  相似文献   

16.
解析几何基本思想就是用代数的方法来讨论曲线的性质.主要涉及两方面内容:一是根据已知条件求曲线方程;二是通过方程讨论曲线的性质.轨迹是被看作适合某种几何条件的点的集合.因此,求轨迹方程的实质就是利用已知的点的坐标间的特性(运动规律)去寻求变量间关系的方程.求轨迹方程时重视挖掘问题的几何性质,适时地选择合适的方法至关重要.本文仅就求轨迹方程的几种常用的方法做一梳理.  相似文献   

17.
求轨迹的方程是解析几何的基本问题之一,是高考中的一个热点和重点.下面介绍几种常用的方法.  相似文献   

18.
本文给出曲线在某点的切线简易求法及两曲线相切判断.  相似文献   

19.
探究空间中某平面内点的轨迹,往往需要兼备平面解析几何、立体几何两方面知识.同时还涉及空间向量等知识,综合度高,有利于发展人们的思维能力,很能体现解题者思维的层次性、深刻性、灵活性,因此此类题目频频现身于高考试卷中.备受命题者青睐.本文将通过示例.对这类问题的求解方法作些探究与归纳.  相似文献   

20.
解析几何体系内部各个知识点之间错综复杂的关系,使得学生不能较清晰地理解并系统地掌握其知识体系.求多动点轨迹方程这类问题是解析几何中教学的重点和难点,这类问题中有时不只含有一个的主动点或从动点,动中有静,点是运动的,但点遵循的规律是不变的,因此求轨迹方程只要挖掘已知条件,将动点满足的规律找出来,并将规律用动点的坐标表示成等式即可.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号