首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定义了Norland Bernoulli多项式和Norland Eurler多项式,证明了恒等式: B_(m_1·m_2·…·m_p)~((k))(x_1,x_2,…x_p,y_1,y_2,…y_k)=(1/2~(sum from i to p(m_i)))((sum from s_1=0 to m_1)(sum from s_2=0 to m_2)…(sum from s_p=0 to m_p)(m_1 s_1)…(m_p s_p))E_(s_1·s_2·…·s_p)~((k))(x_1,x_2,…x_p,y_1,y_2,…y_k) B_(m_1-s_1,m_2-s_2,…,m_p-s_p)~((k))(x_1,x_2,…,x_p,y_1,y_2,…,y_k)  相似文献   

2.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

3.
文[1]推广了Bellman.R获得的正定矩阵A、B的迹的不等式:2tr(AB)≤tr(A~2)+tr(B~2)(*);tr(AB)≤[tr(A~2)]~(1╱2)·[tr(B~2)]~(1╱2)(**)。本文在两两相乘可交换的条件下给出更一般的不等式:tr(multiply from i=1 to m (A_i~(ai))≤sum from i=1 to m (a_i)·tr(A_i)(a_i〉0,sum from i=1 to m (a_i)=1);sum from 1-i to m(-tr) multiply from j=1 to k(A_(i-j))≤multiply from j=1 to k[sum from i=1 to m (tr(A_i~(β_i)]~(β~1)(β〉0,sum from j=1 to k(β=1))。  相似文献   

4.
对于A=(a_(?))∈M_n,我们知道A的行列式是一个矩阵函数,即detA=sum from α∈(?) to ε(σ) multiply from t=1 to (?) a_(to)(t)multiply from t=1 to (?) a_(to)(t)=a_(1o)(1)·a_(2o)(2)·……·a_(mo)(m)表示几个不同行不同列元素之积。  相似文献   

5.
设U_(en)和V_(en)是广Lucas数,用发生函数的方法得到方幂和sum from k=1 to n(U~R_(ek)和sum from k=1 to n(U~_(-ek)),以及正负相间方幂和sum from k=1 to n((-1)~kU~r_(ek))和sum from k=1 to n((-1)~kU~r_(-ek))的计算公式.  相似文献   

6.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

7.
求一般变系数的线性齐次微分方程的特解往往只是凭观察,而没有一个有效的方法,本文根据线性无关函数组u_1,u_2,…,u_m的线性组合sum from n=l to m(i=l)k_ju_l≡0的充要条件是系数k_1,k_2,….k_m.全为零的性质,给出变系数线性齐次微分方程内e~(rx)型特解的一种求法.(sum from n=l to m(i=l)a_(ol)u_l)y~(n)+(sum from n=l to m(i=l)a_(n-1)_lu_l)y~(n-1)+…+(sum from n=l to m(i=l)a_(ol)u_l)y≡0  相似文献   

8.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

9.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

10.
关于五个裴波那契公式的推广   总被引:1,自引:0,他引:1  
公式(sum ∑ from k=1 to n)f_k=f_(n+2)-f_2,(sum ∑ from k=1 to n)f_(2k-1)=f_(2n)-(f_2-f_1)(sum ∑ from k=1 to n)f_(2k)=f_(2n+1)-f_1,(sum ∑ from k=1 to n)f_k~2=f_nf_(n+1)(sum ∑ from k=1 to n)f_kf_(k+1)=1/2(f_(n+2)~2-f_nf_(n+1)- 中,我们把前三个关于任意的裴波那契序列公式(即 f_n=f_(n-1)+f_(u-2),f_1=a,f_2=b)推广到二阶线性递推序列(即 f_n=pf_(n-1)+qf_(n-2),f_1=a,f_2=b,p,q,a,b 均为实数);把后两个公式推广到任意的裴波那契序列中去.  相似文献   

11.
从所周知,方幂和Sm(n)=sum from p=1 to n P~m可表成n的m+1次多项式,即有Sm(n)=sum from v=1 to n P~m=am0n~m++am1n~m+……+amm~n.本又利用导数的方法、给出了确定系数am0,am1,…,a_(mm)的线性方程组,并进而给出了求前几个系数的公式,且证明了除前三个系数外,其余系数交错为0.  相似文献   

12.
本文证明了对任何正整数n,q,r,方程sum from k=0 to n(x-qk)~r=sum from k=1 to n(x+qk)~r仅有正整数解:r=1,x=qn(n+1);r=2,x=2qn(n+1)。  相似文献   

13.
作为一名合格的中学教师,不仅要做到善于解题,而且也要做到善于编题.本文以Cauchy不等式(sum from i=1 to n(x_iy_i))~2≤(sum from i=1 to n(x_i~2))×(sum from i=1 to n(y_i~2)) (1)为基础,结合中学数学知识编拟了一些习题,对如何编写中学数学题做了一些探讨.  相似文献   

14.
在柯西不等式:(sum from i=1 to n a_i~2)·(sum from i=1 to n b_i~2)≥(sum from i=1 to n a_ib_i)~2(其中a_i,b_i∈R,i=1,2,…,n)  相似文献   

15.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

16.
对级数sum from n=1 to ∞(8nbn)的收敛性可用阿贝尔、犹利克雷判别法,而对其绝对收敛性却提文甚少;本文根据比较判别法直接研究级数sum from n=1 to ∞(a_nb_n)的绝对收敛性,并得出结果,用这结果判定了些级数的敛散性显得更加有效和方便。 一、定理及推论 1、定理:设sum from n=1 to ∞(a_n)是一无穷级数,{bn}是一序列。若序列{bn}有畀且级数sum from n=1 to ∞(a_n)绝对收敛,则级数sum from n=1 to ∞(a_nb_n)绝对收敛;若序列{1/bn)有界且sum from n=1 to ∞|a_n|发散,则sum from n=1 to ∞n|a_nb_n|发散。 证明:假设sum from n=1 to ∞(a_n)绝对收敛且{b_n}有界,则存在正数M,使得|bn|相似文献   

17.
由初等代数学,我们知道下面恒等式是成立的:(sum from n to i=1 a_i~2)(sum from n to i=1 b_i~2)-(sum from n to i=1 a_ib_i)=sum from to (i,f)(a_ib_f-a_fb_i)~Z……(1)此恒等式,通常称为拉格朗日(Lagrange)恒等式。由初等代数学也容易证明下面不等式是成立的:  相似文献   

18.
命题设χ_i,a_i∈R~ (i=,2,3……,n),且sum from i=1 to n(χ_i)=(定值),则当χ_i=m(a_i)~(1/2)/sum from i=1 to n(i=1,2,……,n)时,和sum from i=1 to n(a_i/χ_i)取最小值,其最小值为1/m((sum from i=1 to n(a_i~(1/2)))~2  相似文献   

19.
求自然数的方幂和S_m(n)=sum from k=1 (k~m),一般利用递推公式,先算出s_1(n),s_2(n),…,s_m-1(n),然后才能求出s_m(n)。本文给出的方法,可以直接求出sum from k=1(a_mk~m a_(m-1)k~(m-1) … a_1k a_0),其特殊情形就是sum from k=1(K~m)。  相似文献   

20.
含参数的柯西不等式: (sum from i=1 to n(a_ib_i))~2=[(sum from i=1 to n(λ_ia_i)·(b_i/λ_i)]~2≤(sum from i=1 to n(λ_i~2a_i~2)(sum from i=1 to n(b_i~2/λ_i~2),其中λ_i>0 (i=1、2、…、n)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号