首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
用均值不等式求函数最值的关键是:将函数变形为两项的和(或积)的形式,然后用均值不等式求出最值.但在应用均值不等式解题时必须验证: 一正:各项的值均为正; 二定:各项的和或(积)为定值; 三相等:取等号的条件.  相似文献   

2.
均值不等式是解决最值问题的有效工具,掌握一些常见的变形技巧,可以更好地使用均值不等式求最值.一、拆项为了创设使用不等式的条件,有时需将一些项拆为多项之积或和,从而达到凑积或和为定值的目的.为了使等号成立,一般遵循"平均分拆"的原则.  相似文献   

3.
应用均值不等式求最值时,应使和或积为定值。这时往往需要采用“拆项、添项、变系数”等变形技巧构造定值.本文例析若干变形技巧.例1求函数y=x(1-2x)(0相似文献   

4.
在高考题中,利用均值不等式求函数的最值是最为常见、应用较为广泛的方法之一。但是应用均值不等式求最值要注意:一要正:各项或各因式必须为正数;二可定:必须满足"和为定值"或"积为定值",要凑出"和为定值"或"积为定值"的式子结构,如果找不出"定值"的条件用这个定理,求最值就会出错;三能等:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值。  相似文献   

5.
我们在用均值定理求某些函数的最值时,一般都能按照均值定理的3个要求:“一正、二定、三相等”来求函数的最大值或最小值.然而,我们在领略到它的方便快捷之后,不禁产生困惑:“一正”、“三相等”都好理解,为什么要规定“二定”?为什么函数式中含变量的各项的和或积必须是定值,才能使用该定理?或者只有a+b,ab有一个为定值才能用该公式?当然不是,该定理使用只有在求最值的时候,才需要注意“二定”问题.那么如何理解求最值时,要考虑“二定”的问题呢?  相似文献   

6.
在应用均值不等式的有关定理求最值时,要把握定理成立的三个条件,就是“一正——各项都是正数;二定——积或和是定值;三等——等号能否取得.”若忽略了某个条件,就会出现各种似是而非的错误.  相似文献   

7.
均值不等式是高中数学重要的基本定理,应用十分广泛,如应用于不等式大小的比较、求函数的最值、不等式证明等.均值不等式的应用,要把握三个成立的条件,即"一正(各项或各因式都为正);二定(积或和为定值);三相等(各项或各因式都能取得相等的值)".  相似文献   

8.
均值定理是求函数最值的重要方法,但需具备“正、定、等”条件,当这些条件不完全具备时不能直接使用,常需对函数式作“添、裂、配、凑”变形,使其完全满足条件后方可用之,对变形能力的要求较高。然而有些题由于解析式自然,形态根本凑不出定值,或虽凑出定值而等号又不能成立,对这样的题目,学生往往觉得很难用甚至不能用均值定理而感到棘手.  相似文献   

9.
"两个正数的算术平均数不小于它们的几何平均数"是不等式一章的一个重要定理.它在不等式的证明、求函数的最值和解决实际问题中应用非常广泛.应用这个定理求最值时,要求满足"一正、二定、三相等"3个条件,即变量是正数、和或积是定值、等号成立.应用这个定理的关键步骤是通过变形将积或和变为定值.但同学们在应用时常常出现错解,下面通过分析错解的原因来强化应注意的几个问题.  相似文献   

10.
在教学实践中,学生一般都能用均值定理求一个变量的最值,这只需按照“一正、二定、三等”六字诀即可搞定;但是,对于含双元(或两个以上)的最值问题,学生往往能列出式子,但无法求出最值来!笔者的体会是,不必拘泥于“定值”二字,而应尝试用均值定理去“化积”、“化和”,从而把这个非定值的积或和约分,进而突破“瓶颈”,使问题获解.举例说明如下:  相似文献   

11.
应用均值不等式求最值时,应使和或积为定值.这时往往需要采用“拆项、添项、变系数”等变形技巧调整定值,使复杂问题简单化,从而可得到事半功倍的效果.  相似文献   

12.
利用均值不等式求最值要注意以下三点:(1)“正”指均值不等式成立的前提条件是a,b∈R~ ,即a,b为正数;(2)“定”指用均值不等式时需要通过补项、拆项、平衡系数等方法凑成和(或积)为定值;(3)“等”指用均值不等式求最值时,一定  相似文献   

13.
函数最值问题是高中数学教学的重要内容之一,而用均值定理求最值是一种重要方法,该法要求具备“一正、二定、三相等”的条件,如果这些条件不完全具备时就不能直接使用,常需对函数式作“添、裂、配、凑”变形使其完全满足条件后方可用之,对变形能力的要求较高.然而有些题目由解析式的自然形态根本凑不出定值,  相似文献   

14.
利用均值不等式求函数的最值是高中数学的一个重点,也是高考的一个热点,三个必要条件即一正(各项的值为正)二定(各项的和或积为定值)三相等(取等号的条件成立)更是相关考题瞄准的焦点.在具体的题目中,"正数"条件往往从题设中获得解决,"相等"条件也容易验证确定,而要获得"定值"条件常常被设计为一个难点,它需要一定的灵活性和变形技巧,因此"定值"条件决定着均值不等式应用的可行性,这是解题成败的关键.下面就一典型题目对此加以说明  相似文献   

15.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但是,有些题目必须进行必要的变形才能利用均值不等式求解.下面是一些常用的变形技巧.一、配凑1、凑系数例1当00,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子的积的形式,但其和不是定值.注意到2x (8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可.解y=x(8-2x)=21[2x·(8-2x)]≤212x 82-2x2=8,当且仅当2x=8-2x即x=2时取等号.∴当x=2时…  相似文献   

16.
我们知道,在运用基本不等式求最值时务必注意三点:一正、二定、三相等.具体地说,首先要求字母或代数式的取值为正,其次是欲求和的最小值必须凑出积的定值,欲求积的最大值必须凑出和的定值,再其次就是当式子取到最值时,不等式中的等号确能成立.基于这三方面的原因,在运用基本不等式求最值之前,一般要对题设式子进行变形.在变形中,常常需要用到一些技巧,这就是本文所要说明的问题.  相似文献   

17.
浅谈用含参均值定理求最值   总被引:1,自引:0,他引:1  
均值定理是求函数最值的重要方法 ,但需具备“正、定、等”条件 ,当这些条件不完全具备时不能直接使用 ,常需对函数式作“添、裂、配、凑”变形使其完全满足条件后方可用之 ,对变形能力的要求较高 .然而有些题由于解析式自然 ,形态根本凑不出定值 ,或虽凑出定值而等号又不能成立 ,对这样的题目 ,学生往往觉得很难用甚至不能用均值定理而感到棘手 .但此时若用含参均值定理 ,如 (λa) 2 b2 ≥ 2λab(当且仅当λa =b时取等号 ) ,λa b≥ 2λab(当且仅当λa =b时取等号 ) ,或λ1 a λ2 b c≥3 3 λ1 λ2 abc(当且仅当λ1 …  相似文献   

18.
我们熟知,利用均值不等式求最值,必须具备三个条件:"一正二定三相等",其中尤为重要的是和(积)为定值。本文就题设未给出和(积)为定值的条件下,如何凑出定值求出最值,谈四种常用的变凑方式.  相似文献   

19.
应用均值不等式或柯西不等式求函数最值,使和(或积)为定值或者是所需要的式子是关键的一步,设参数可使这一棘手的问题得到圆满解决,通过设参、定参,把函数进行适当变形,根据系数或等号成立的条件定参数.下面举例说明设参,定参的技巧,供参考.  相似文献   

20.
利用均值不等式求最值,是数学中的一种常用方法.但同时也是非常容易出错的一类题目,原因就在于忽略了利用均值不等式求最值的三个条件“正数、定值、等号成立”.从而造成题目的误解甚至是错解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号