首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

2.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

3.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

4.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

5.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

6.
1导数的概念和几何意义1.1概念如果y=f(x)在开区间I内的每点处都可导,就称该函数在I内可导;在定义区间I内,当x=x0,f(x0)是一个确定的数。这样,当x变化时,f′(x)便是x的一个函数  相似文献   

7.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

8.
导数是近年来高考的新增内容,但由于导数这一单元概念性比较强,而教材对上述内容的简化处理,从而使得同学们在学习这部分内容时经常会犯这样或那样的错误,下面列举几种常见的典型错误,以提醒大家注意·1·在运用导数的有关符号时,由于对符号的意义理解不透彻而致错【例1】已知y=x3,求y′(1)·错解1y′(1)=(x3)′=3x2=3·错解2y′(1)=(3×12)′=0·错解剖析导函数f′(x)(即y′)与导数f′(x0)(即y′|x=x0)是有区别的,前者是函数,后者是一个数;但它们又有联系,即f′(x0)是f′(x)在点x0处的函数值·错解1写法错误,错解2误认为f′(x0)就是[f(x0)]…  相似文献   

9.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

10.
在高等数学中,有许多命题(或定理)与充要条件有关.例如;在一元微分学中,函数连续是导数存在的必要条件;函数f(x)在点x_0可微的充分必要条件是函数f(x)在点x_0可导.在二元微分学中,函数z=f(x·y)的偏导数(?)z/(?)x·(?)z/(?)y在点p(x·y)连续,则函数在该点的全微分存在(充分条件).……等等.  相似文献   

11.
正导数、微积分是数学学科的重要组成部分,导数、微积分在天文、力学、数学、化学、生物学、物理学、工程学和社会科学等领域都有什么样重要的作用,微积分的基本原理和思想在我们的日常生活中、学习、工作中也经常用到。一、导数在经济学中的应用导数反映函数的自变量在变化过程中,相应的函数值变化的快慢程度——变化率。如果在函数y-f(x)在某一点x_0处可导的前提下,若函数y-f(x)在某区间内每一点处都可导,则称y=f(x)在该区间内可导,记y=f'(x)为y=f(x)在该区间内的可导函数(简称导数)。导数在引进经济学之后,对经济分析带来了很大变革,可以定量分  相似文献   

12.
一、导数概念及其经济意义 导数的定义:设y=f(x)在x_0点的某领域内有定义,极限(若存在)表示函数y=f(x)在x_0点的导数,记为f(x_0)。 又由极限性质可知:(→0时)所以,即x·△x比△x是高阶无穷小,于是可以用f(x_0)△x近似代替△y, 记△y≈f(x_0)△x 当△x=l时,△y≈f(x_0) 意即f(x_0)近似地表示在x_0的基础上自变量改变一个单位时,△y的改变量。  相似文献   

13.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

14.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

15.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

16.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

17.
曲线的切线作法,方法很多,本文试图利用导数知识来求作曲线的切线,可供中学教师参考。函数y=f(x)在点x_o处的导数f′(x_o)的几何意义,就是曲线y=f(x)在点x_o处的切线的斜率。这样,曲线y=f(x)在点p(x_o,y_o,)处的切线是y-y_o=f′(x_o)(x-x_o)………(1) 法线是y-y_o=-1/f′(x_o)(x-x_o)即x-x_o=-f′(x_o)(y-y_o)………………(2)(1)式中令y=0,得出切线与x轴的交点T的横坐标为x_o-y_o/f′(x_o),同样,(2)式中令y=0,得出法线与x轴的交点N的横坐标为x_o f′(x_o)·y_o,切线PT在x轴上的射影为MT,在Rt△  相似文献   

18.
在现行的《高等数学》教材中,对二元函数的可微性仅分别给出了必要条件和充分条件,而对其可微的充要条件均未涉及。本文试图给出一种二元函数可微的充要条件并证明之,以期抛砖引玉。 命题:二元函数Z=F(X,Y)在点P(x_0,y_0)处可微的充要条件是f(x,y)在点P处的偏导数(f_x~′(x_0,y_0),  相似文献   

19.
一、函数的极大值(或极小值)、最大值(或最小值)。极大值(或极小值):函数y=f(x)在点x_0的附近有定义,并且f(x_0)的值比在x_0附近所有各点的函数值都大(或都小),那么f(x_0)是函数f(x)的一个极大值(或极小值)。最大值(或最小值):f(x_0)是函数y=f(x)在点x_0的函数值,如果f(x_0)≥f(x)(或f(x_0)≤f(x)),对于定义域内的任意x都成立,那么f(x_0)是函数f(x)的最大值(或最小值)。注意: 1.极值是一个局部概念,只研究f(x_0)与点x_0左右邻近的点的函数值进行大小比较。最值是一个整体概念,是在整个定义域内比较函数值的大小。 2.在整个定义域内,如果有极大值(或极小值),其极大值(或极小值)有可能不止一个。如果  相似文献   

20.
我们知道,高等数学中对三次函数极值是这样来求的: 设f(x)=x~3 px~2 qx r,则f′(x)=3x~2 2px q. 令f′(x)=0. ①当p~2>3q时,解得由成 当x由小到大经过x_1时,f′(x)由正变负,经过x_2时,f′(x)由负变正. ∴y极大=f(x_1),y极小=f(x_2). ②当P~2=3q时,解得x_1=x_2=-p/3,此时f′(x)≥0恒成立,x由小到大经过-p/3时,f′(x)不变号,故-p/3不是极值点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号