首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
三角不等式的证明,由于课本中没有专门章节叙述,因此学生往往不知从何下手。本文将三角不等式的证明方法加以归纳分类,供参考。一、利用三角函数的性质|sinx|≤1、|cosx|≤1 证题例1.求证: 2+sinx+cosx≥2/(2-sinx-cosx)。证明:(2+sinx+cosx)-(2/(2-sinx-cosx)) =((2+sinx+cosx)(2-sin-cosx)-2)/(2-sinx-cosx) =(4-(sinx+conx)~2-2)/(2-sinx-cosx)  相似文献   

2.
利用均值不等式求最值要注意以下三点:(1)“正”指均值不等式成立的前提条件是a,b∈R~ ,即a,b为正数;(2)“定”指用均值不等式时需要通过补项、拆项、平衡系数等方法凑成和(或积)为定值;(3)“等”指用均值不等式求最值时,一定  相似文献   

3.
某些类似于直线形式或定比分点坐标公式形式的问题上 ,也能巧妙地利用定比分点坐标公式去解决 ,从而获得一种全新的解题理念 .1.用在一些函数值域和不等式的解答问题上【例 1】 求函数y=1+cosx3-2cosx的最值 .解 :类比x=x1+λx21+λ则y=13+ ( -23cosx) ( -12 )1+ ( -23cosx),令“直线”上三点A( 13,0 )、B( -12 ,0 )、C(y ,0 ) ,则λ =-23cosx ,知 :-23≤λ≤23,当λ =-23时 ,y =13+ ( -23) ( -12 )1+ ( -23)=2 ;当λ =23时 ,y =13+ 23( -12 )1+ 23=0 ,所以ymax =2 ,ymin =0【例 2】 求函数y=2x21+x2 的值域解 :y =2x21 +x2 =0 +x2 · 2…  相似文献   

4.
均值不等式是一个应用广泛的不等式,在证明不等式问题时,为了创设使用均值不等式的条件,常常需要对题中的式子作适当的变形,而变形的出发点又是在兼顾所给条件的基础上注意不等式的取等条件,若遇到等号取不到、用“均值法”无效时可考虑引入参数,借助待定系数法来解决.这样才能使复杂问题简单化,从而达到事半功倍的效果.下面举例说明.  相似文献   

5.
均值不等式是解决最值的重要工具,但由于其约束条件苛刻,不少同学在使用时常常顾此失彼,导致解题失误.下面以同学们易陷于的误区举例分析如下:一、忽视等号成立条件例1求y=sinxcosx+sinx1cosx(0相似文献   

6.
平均值不等式是高中数学的重要内容 ,熟练掌握二元和三元均值不等式及其变形应用 ,可以巧妙地解决许多数学题 .1 证明不等式这是最为大家常见问题 ,问题解决的关键是怎样根据题目提供的隐含条件去构造二元或三元均值不等式 .例 1 已知 x,y,z∈ R+且满足 xyz(x +y + z) =1 ,求证 :(x + y) (y + z)≥ 2 .证明 :(x + y) (y + z) =xy + xz + y2 + yz =y(x + y + z) + xz =y . 1xyz+ xz =1xz+ xz≥ 2 1xz. xz =2 .证毕 .此题从“2”这个数字 ,提示我们构造二元均值不等式 .2 求最值高中数学很多地方涉及求最值 ,利用均值不等式中等号成立的条…  相似文献   

7.
利用均值不等式求函数的最值,必须注意“一正二定三相等”的条件,尤其在各个正数的和不是定值时或等号不能成立时,我们可以利用带参数的均值不等式求函数的最值。读者不难通过下面几道  相似文献   

8.
一类题的解法的探索与研究   总被引:1,自引:0,他引:1  
20 0 2年全国高中数学联赛中有一道题 :使不等式sin2 x +acosx +a2 ≥ 1 +cosx对一切x∈R恒成立的负数a的取值范围是。本题属于恒成立的不等式中求参数的范围问题 ,把一类题的解法在所学知识范围内作尽量彻底的研究 ,有助于学生综合知识能力的提高。本类问题经深入研究 ,发现应该有以下三种各有千秋的解题思路。思路一 分离参数法解题思路的着眼点是通过分离参数转化为函数的最值问题。解法一 原给不等式可以化为a2 +(a -1 ) 24≥(cosx -a -12 ) 2 , 设t=cosx ,u(t) =(t-a -12 ) 2 ,则t∈ [-1 ,1 ],且函数u(t)的图像开口向上 ,对称轴为t…  相似文献   

9.
<正>2013年全国高中数学联赛B卷第10题:假设a,b,c>0,且abc=1,求证:a2+b2+c2≥a+b+c 1笔者经过思考,给出该联赛试题的简证、加强和推广等多角度探究,现行成文和大家一起分享.1关于赛题的简证命题组利用柯西不等式、三元均值不等式和六元均值不等式给出两种证法,下面我们利用二元均值不等式和三元均值不等式给出两种简证.简证1由二元均值不等式和三元均值不等  相似文献   

10.
赛题 已知a,b,c为直角三角形的三边长,其中c为斜边长,求使a3+b3+c3/abc≥k成立的k的最大值(第四届北方数学邀请赛试题). 由文[1]知,文[2]“利用导数的知识给出了两种证明方法,指出不能用均值不等式和幂平均不等式求a3+b3+c3/abc的最小值.”文[1]作者以均值不等式求出了a3+b3+c3/abc的最小值.  相似文献   

11.
均值不等式是高中数学中非常重要的一个不等式类型,要求学生能利用均值不等式a+b≥2√ab,已知a与b的积为定值会求a+b的最值;能充分理解均值不等式的适用条件"一正二定三相等".本文将通过举例来说明如何灵活利用均值不等式求函数的最值.  相似文献   

12.
运用均值不等式求最值是一种常用的求最值的方法,但在运用均值不等式求最值时必须同时注意三个条件,即“一正,二定,三相等”。“一正”是指各项必须为正,“二定”是指各项的乘积或各项之和为定值,“三相等”是指各项可取到相等的值。忽视其中任何一个条件,都会导致解题错误。  相似文献   

13.
均值不等式:“设α_1、α_2、…α_n为n(n>1)个正数,则α_1+α_2+…+α_n≥n (α_1α_2…α_n)~(n/1);等号成立当且仅当α_1=α_2=…α_n”是一个应用比较广泛的不等式,许多外形与它截然不同的不等式的证明,常常能利用它顺得得到解决;不过需要有正确的思路和一定的技巧。本文旨在举例说明利用均值不等式证题的重要思路和技巧,供参考。  相似文献   

14.
均值不等式:设a1,a2,…,an∈R+,则a1+a2+…+an/n≥√a1a2…an 当且仅当a1=a2=…=an时,不等式等号成立. 学生在应用时,最感困难的是怎样变形来沟通待解决的问题与均值不等式之间的联系,确实应用均值不等式解题是以适当的变形为基础,可以说恰到好处的变形是应用均值不等式解题的关键.为此,本文归纳运用均值不等式解题的变形技巧,供参考.  相似文献   

15.
均值不等式是求值域与最值的重要工具.下面是利用均值不等式时应注意的一些方面,希望同学们解题时注意.  相似文献   

16.
在解含有绝对值的不等式时,通常我们去掉绝对值再求解,但在有一些问题中,添加绝对值也会取得求解的途径。下面给出两个例题加以说明。例1 求函数y=sinx+Z/sinx的值域。分析:在定义域x≠kπ(k∈Z)内,用“均值不等式”或用“函数的有界性”求此函数y的值域,均难奏效;若用“换元法”令t=sinx,则y=f(x)=t+Z/t,t∈E[-1,0)∪(0,1],转化由函数y=f(t)的单调性求值域,计算过程冗长;但由y=(sin~2x+2)/sinx两边添上绝对值,则可用“均值不等式”简明解出。解:由y=(sin~2x+2)/sinx得  相似文献   

17.
张仁孝 《成才之路》2009,(27):68-68
运用均值不等式求最值简便易行,但是在应用时,不要忽略了均值不等式成立的条件,即“一正、二定、三相等”。下面通过例题对三个条件分别加以说明。一、正 “正”就是指具备均值不等式的形式中的各部分均表示正数,不能只从形式上去看。  相似文献   

18.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

19.
不等式     
考点解读不等式的性质与定理点击考点一均值不等式二元均值不等式不但用来求函数的最值,而且也是综合法证明不等式的重要理论依据.注意其延  相似文献   

20.
均值不等式在解题中应用十分广泛,但部分同学对利用均值不等式求最值的条件(一正、二定、三相等)认识不足,导致解题失误.本文举例说明应用均值不等式求最值应注意的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号