首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题:设x,y,z∈R,求证: x/(1 x xy) y/(1 y yz) z/(1 z zx)≤1. 这是《中等数学》1995年第6期数学奥林匹克高中训练题17二试第一大题。编者给出了一种代数证法,现在给出由我班学生曹  相似文献   

2.
一个不等式的新证   总被引:1,自引:1,他引:1  
1996年<中等数学>第2期数学奥林匹克题初40题为:已知x,y,z为正实数,求证:(x)/(2x y z) (y)/(x 2y z) (z)/(x y 2z)≤(3)/(4).  相似文献   

3.
第36届IMO(1995年)预选题中有一道不定方程题:求所有正整数x,y,使得x+y2+z3=xyz,这里z是x与y的最大公约数.  相似文献   

4.
题已知x、y、z均为正实数,求证:x/2x+y+z+y/x+2y+z+z/x+y+2z≤3/4(1996年《中等数学》第2期数学奥林匹克问题初40题)文[1]、[2]分别给出了上述不等式的一种证法.本文再给出几种新证法.  相似文献   

5.
问题1(《数学通报》2009年第1期问题)已知x,y,z∈R^+,则x+y/2z+y+z/2x+z+x/2y≥2x/y+z+2y/z+x+2z/x+y.此不等式比较简单,也可以深化为6个字母的情形.  相似文献   

6.
第46届IMO(2005年)第三题是: 题1设x、y、z >0,且xyz≥1.证明: ∑x5-x2/x5+y2≥0, ① 其中,∑表示轮换对称和. 式①的等价形式为 ∑x2+y2+z2/x5+y2+z2≤3. 此不等式有很多证法,本文不再赘述. 易知,x2+y2+z2≥33√x2y2z2 ≥3. 自然的想法是将题1中的...  相似文献   

7.
第39届 IMO 预选题:设 x,y,z 是正实数,且 xyz=1,求证:x~3/((1 y)(1 z)) y~3/((1 x)(1 z)) z~3/((1 x)(1 y))≥3/4.文[1]给出了这个不等式的四个推广:命题1 设 x,y,z 是正实数,且 xyz=1,λ是常数且λ≥0,则x~3/((λ y)(λ z)) y~3/((λ x)(λ z)) z~3/((λ x)(λ y))≥3/((1 λ)~2).命题2 设 x,y,z 是正实数,且 xyz=1,m 是正整数且m≥3,则x~m/((1 y)(1 z)) y~m/((1 x)(1 z)) z~m/((1 x)(1 y))≥3/4.  相似文献   

8.
《中学数学》94年第1期刊登的“第十九届全俄中学生数学奥林匹克试题和解答”中,有一道题目: 求证:对于任意的x,y,z,有不等式: sin~2x*cosy sin~2y*cosz sin~2z*cosx<3/2 (1) 田正平老师在94年第8期“一道竞赛题的改进”一文中将上界改进为29/20(=1.45),  相似文献   

9.
一个流行不等式的再推广及统一证明   总被引:1,自引:1,他引:0  
1993年,冯跃峰老师在《上海中学数学》第2期上提出一个不等式问题:已知x,y,z∈R~ ,x y z=1,求证:(x~4)/(y(1-y)) (y~4)/(z(1-z)) (z~4)/(x(1-x))≥1/6.(1) 1994年,尹文华老师将其推广,得到如下结果:  相似文献   

10.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

11.
2019年第3期《美国数学月刊》刊登了摩洛哥人Alijadallah Belabesset提供的问题.问题12083[1]设x,y,z>0,证明:1/x+y+1/y+z+1/z+x≥3√3/2√x^2+y^2+z^2(1).本文从变量的个数与系数出发,给出如上不等式的三个推广.  相似文献   

12.
安振平先生在《中学数学月刊》2 0 0 3年第 7期《一个三角形中的不等式》一文中给出了不等式 :命题 1 在△ ABC中 ,三边长 a,b,c,则a - b ca b- c ab c - a bc ≤ 3. ( 1 )现在给出 ( 1 )左式的下界 :命题 2 在△ ABC中 ,三边长为 a,b,c,则 a - b ca b- c ab c - a bc >2 . ( 2 )证明 设2 x =a - b c,2 y =b- c a,2 z =c- a b则a =x y,b =y z,c=z x,且 x,y,z >0 .∴ a - b ca b - c ab c - a bc=2 xx y 2 yy z 2 zz x= 2 ( xx y yy z zz x)>2 ( xx y yy z zz x)>2 ( xx y z yy z x zz x y) =2 .这个…  相似文献   

13.
题目:已知:x、y、z∈R~ ,且xyz=1。 求证:((x~3)/((1 y)(1 z))) ((y~3)/((1 z)(1 x))) ((z~3)/((1 x)(1 y)))≥3/4。 (第39届IMO预选题) 本文给出其两个推广。  相似文献   

14.
《中学数学教学》2010年第1期有一道问题征解:已知x、y、z〉0且x+y+z=1,求证:1/2≤ln(x^3+y^3+z^3)/ln(x^5+y^5+z^5)〈3/5.  相似文献   

15.
本刊 2 0 0 3年第 5期有奖解题擂台 (63 )中 ,邵剑波老师提出了如下一个条件不等式问题 :证明或否定 ,设a >b >c >0 ,x21a2 y21b2 z21c2 =1 ,x22a2 y22b2 z22c2 =1 ,且 (x -x1 x22 ) 2 (y -y1 y22 ) 2 (z -z1 z22 ) 2 =14[(x1-x2 ) 2 (y1-y2 ) 2 (z1-z2 ) 2 ],则x2 y2 z2 ≤a2 b2 c2 。上述问题中的结论是成立的 ,本文给出一个证明。证明 由x21a2 y21b2 z21c2 =1x22a2 y22b2 z22c2 =1知 ,P1(x1,y1,z1) ,P2 (x2 ,y2 ,z2 )是椭球面 x2a2 y2b2 z2c2 =1上的两点 ,设P1P2 的中点为P0 ,则P0 点坐标为 (x1 x22 ,y1 y22 ,z1 z…  相似文献   

16.
例1已知x,y,z∈R~+,且1/x+2/y+3/z= 1,求x+y/2+z/3的最小值.(第11届(00年)"希望杯")解构造向量  相似文献   

17.
1征解题的提出 《数学通报》09年第9期问题1814:x,y,z∈R+,λ〉0,μ≥0,υ≥0,且λ≥2μ-υ,λ≥2υ-μ,0〈α≤1.证明:(x/λx+μy+υz)^α+(y/υx+λy+μz)^α+(z/μx+υy+λz)^α≤3/(λ+μυ)^α.  相似文献   

18.
孙毅 《中等数学》2003,(5):19-19
题目 已知x≥y≥z>0 .求证 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2 .这是第 3 1届IMO的一道预选题 ,原解答较繁 ,且技巧性强 ,这里给出一个相对简洁的证法 .证明 :由Cauchy不等式 ,有x2 yz +y2 zx +z2 xyx2 zy +y2 xz +z2 yx≥(x2 +y2 +z2 ) 2 .观察上式知 ,如有x2 yz +y2 zx +z2 xy ≥x2 zy +y2 xz +z2 yx ,则问题得证 .通分移项 ,有x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2 ≥0 .①故只须证式①成立 .x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2=x2 y2 (x-y) +y2 z2 (y-z) +x2 z2 (z-x)=x2 y2 (x -y) +y2 z2 (y -z) +x2 z2 ·(z-y +y -x)…  相似文献   

19.
《中学数学》2007年1月给出的征解题是:设x、y、z为非负实数,且x y z=32,求式子x3y y3z z3x的最大值.笔者经探讨,获得以下一般性结论:定理设x、y、z为非负实数,且x y z=k(k>0),记P=x3y y3z z3x,则P≤22576k4①当且仅当x=0,y=3z=43k或y=0,z=3x=43k或z=0,x=3y=43k时,①式取等号.为方便①式的证明,先给出如下引理:引理设x、y、z为非负实数,则当x≥y≥z或y≥z≥x或z≥x≥y时,x3y y3z z3x≥xy3 yz3 zx3②当x≤y≤z或y≤z≤x或z≤x≤y时,②式反向成立.证明②式等价于:[y (x-y)]3y y3[y-(y-z)] [y-(y-z)]3[y (x-y)]≥[y (x-y)]y3 y[y-(y-z)]3 [y-(…  相似文献   

20.
多项式护 y“十z“一3xyz分解方法如下: x“ y3=(x Jr)3一3xy(x y) (x y)3 23=(x y z)〔(x y)2一(x y)z 22〕 故有x3 y3 23一3xyz=(x y)3一3xy(x y) 23一3xyz =(x y z)〔(x y)2一(x y)z 22〕一3xy(x y z) =(x y z)(xZ yZ 22一xy一yz一xz) 即:x3七y3 23一3xyz=(x 了 z)(xZ yZ 22一xy一yz一xz) 如在复数范围内还可继续分解为: x3 y3 23一3xyz=(x y z)(x 。y 。22)(x 。Zy 。z) .。是1的三次虚根(1)式是个很重要的公式,应用广泛,现仅举几例说明之。 1.因式分解 公式(1)中如果x y z=0,则(1)式变为 x3 y3 23二3xyz(3)式说明:任意三数之和如为0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号