首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although there has been considerable research into knowledge transfer for over a century, there remains a need for specific, validated techniques for teaching for transfer. This article reports on classroom-based research in which students learned about complex systems and climate change with agent-based computer models using two different instructional approaches based on productive failure (PF). In both PF approaches, students initially explored a problem space on their own and then received teacher-led instruction. One treatment group used climate computer models whereas the other group engaged in analogical comparisons between the same climate computer models and complexity computer models in different domains. The study found both groups demonstrated significant learning gains by posttest on assessments of declarative and explanatory knowledge and on within domain near transfer. However, students in the two models treatment group performed at a significantly higher level on an across domain far transfer problem solving task. Theoretical and practical implications are considered.  相似文献   

2.

This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students’ reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  相似文献   

3.
To progress from intuitive ideas to deep conceptual understanding, students need to become aware of gaps in their ideas. Attempting to solve problems prior to instruction may lead to a global awareness of knowledge gaps (i.e., awareness without being able to identify which specific component is lacking). These gaps may subsequently be specified by comparing students' solutions to the canonical solution. In our first experiment, the teacher highlighted specific gaps by comparing typical student solutions to the canonical solution before or after problem solving. The second experiment varied the factors form of instruction (with or without student solutions) and timing of instruction (problem-solving prior to or after instruction). Problem-solving prior to instruction triggered a global awareness of knowledge gaps. While this was beneficial for learning when combined with instruction with student solutions, our results indicate that comparing student solutions during instruction to specify the gaps is the most relevant factor.  相似文献   

4.
The ontologies of complexity and learning about complex systems   总被引:1,自引:0,他引:1  
This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that varied in terms of the types of text based scaffolds that were provided related to a set of complex systems concepts. Although significant declarative knowledge gains were found for the main experimental treatment in which the students received the most scaffolding, there were no significant differences amongst the three groups in terms of the more cognitively demanding performance on problem solving tasks. However, it was found across all groups that the students who enriched their ontologies about how complex systems function performed at a significantly higher level on transfer problem solving tasks in the posttest. It is proposed that the combination of interactive representational scaffolds associated with NetLogo agent-based models in complex systems cases and problem solving scaffolding allowed participants to abstract ontological dimensions about how systems of this type function that, in turn, was associated with the higher performance on the problem solving transfer tasks. Theoretical and design implications for learning about complex systems are discussed.  相似文献   

5.
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher–students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants’ instruction with computer technology was (Teacher) initiation–(Student and Teacher) response sequences–(Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers’ learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers’ own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.  相似文献   

6.
Students from three different British Columbia grade six classes were followed through two weeks of instruction on climate change. Pre, post, and follow-up surveys were used to determine the differences in knowledge gained and retained by students that received direct instruction from their science teacher, and by those who received equivalent content instruction from outside presenters. The teacher participant also completed a survey on her experience with the researcher-designed lesson plans. Students’ results on the surveys were compared to results from a control group with no intervention. The teacher-based setting resulted in significantly higher knowledge gain, although no difference was found between the groups’ rate of knowledge decline thereafter. Highest gains in knowledge were for the carbon cycle and the human impacts topic, followed by understanding the difference between climate and weather. The students and teacher alike appeared to struggle with the topic of global warming and the greenhouse effect. The research suggests that with the appropriate background information the classroom teacher is likely to be more effective at conveying the science of climate change, particularly when it is taught through an understanding of the carbon cycle and its human impacts. It also suggests that those non-governmental organizations engaged in climate change education might be better served by investing their limited resources in the development of learning materials and subsequent professional development for teachers rather than focusing on in-school presentations.  相似文献   

7.
8.
In the present study it was investigated whether the pedagogical knowledge of teachers has an influence on the process quality of physics instruction and on the learning achievement of students as well. Pedagogical knowledge, conceptualized as knowledge about strategies in classroom instruction that is domain-general and relevant for teaching behaviors, was measured using a paper-and-pencil test with two scales: one scale on declarative knowledge, the other on conditional-procedural knowledge (Lenske et al. 2015). As a basic aspect of the process quality of classroom instruction, classroom management was assessed using video ratings of two lessons from each participating teacher. Students’ learning achievement was assessed using standardized domain-specific knowledge tests in a pretest-posttest design. The sample included 34 teachers from higher-track secondary schools and their students (N?=?993). A complex bootstrapping mediation model shows that teachers’ pedagogical knowledge, mediated by their classroom management, has a positive effect on their students’ learning achievement.  相似文献   

9.
This paper replicates and extends my earlier work on productive failure in mathematical problem solving (Kapur, doi:, 2009). One hundred and nine, seventh-grade mathematics students taught by the same teacher from a Singapore school experienced one of three learning designs: (a) traditional lecture and practice (LP), (b) productive failure (PF), where they solved complex problems in small groups without any instructional facilitation up until a teacher-led consolidation, or (c) facilitated complex problem solving (FCPS), which was the same as the PF condition except that students received instructional facilitation throughout their lessons. Despite seemingly failing in their collective and individual problem-solving efforts, PF students significantly outperformed their counterparts in the other two conditions on both the well-structured and higher-order application problems on the post-test, and demonstrated greater representation flexibility in working with graphical representations. The differences between the FCPS and LP conditions did not reach significance. Findings and implications of productive failure for theory, design of learning, and future research are discussed.  相似文献   

10.
A total of 136 eighth-grade math students from 2 Singapore schools learned from either productive failure (PF) or vicarious failure (VF). PF students generated solutions to a complex problem targeting the concept of variance that they had not learned yet before receiving instruction on the targeted concept. VF students evaluated the solutions generated by PF students before receiving the same instruction. Student-generated solutions were either suboptimal or incorrect, and in this sense can be conceived as failed problem-solving attempts. Although there was no difference on self-reported engagement, PF students reported significantly greater mental effort and interest in knowing the canonical solution to the problem than VF students. When preexisting differences in general ability, math ability, and prior knowledge were controlled, PF students outperformed VF students on conceptual understanding and transfer without compromising procedural fluency. These results suggest that when learning a new math concept, people learn better from their own failed solutions than those of others provided appropriate instruction on the targeted concept is given after the generation or evaluation activity.  相似文献   

11.
This study establishes the effects of a flipped classroom model of instruction on academic performance and attitudes of 66 first-year secondary school students towards chemistry. A pre-test and post-test experimental design was employed to assign students randomly into either the experimental or control group. In order to assess the suitability of using flipped model of instruction, students were divided in two groups. For the first group called the experimental group, a “flipped classroom” was used in which the students were given video lessons and reading materials, before the class to be revised at home. On the other hand, the second group followed traditional methodology, and it was used as control. The rate of reaction knowledge test and the chemistry attitude scale were administered. In addition, the researcher documented classroom observations, experiences, thoughts and insights regarding the intervention in a journal on a daily basis in order to enrich the data. Students were interviewed at the end of the research in order to enrich the qualitative data also. Findings from this study reveal that the flipped instruction model facilitates a shift in students’ conceptual understanding of the rate of chemical reaction significantly more than the control condition. Positive significant differences were found on all assessments with the flipped class students performing higher on average. Students in the flipped classroom model condition benefited by preparing for the lesson before the classes and had the opportunity to interact with peers and the teacher during the learning processes in the classroom. The findings support the notion that teachers should be trained or retrained on how to incorporate the flipped classroom model into their teaching and learning processes because it encourages students to be directly involved and active in the learning.  相似文献   

12.
In a study with ninth-grade mathematics students on learning the concept of variance, students experienced either direct instruction (DI) or productive failure (PF), wherein they were first asked to generate a quantitative index for variance without any guidance before receiving DI on the concept. Whereas DI students relied only on the canonical formulation of variance taught to them, PF students generated a diversity of formulations for variance but were unsuccessful in developing the canonical formulation. On the posttest however, PF students significantly outperformed DI students on conceptual understanding and transfer without compromising procedural fluency. These results challenge the claim that there is little efficacy in having learners solve problems targeting concepts that are novel to them, and that DI needs to happen before learners should solve problems on their own.  相似文献   

13.
Becoming a history teacher requires the integration of pedagogical knowledge, pedagogical content knowledge, and content knowledge. Because the integration of knowledge from different disciplines is a complex task, we investigated prompted learning journals as a method to support teacher students’ knowledge integration. Fifty-two preservice history teachers participated in the experimental study. They read a text about a historical event, a text about teaching history, and a text about cognitive learning processes. Then they wrote a learning journal entry about the three texts. To support the journal writing, the participants in the experimental condition received four integration prompts, whereas the participants in the control condition received no prompts. In the prompted condition, the students engaged more often in integration strategies at the cost of rehearsal and organization strategies. Rehearsal and integration strategies predicted students’ recall of knowledge and their ability to evaluate learning tasks. Integration strategies as elicited in the journals predicted preservice teachers’ performance when designing a learning task for history education. In solving this task, the prompted preservice teachers used the information from the three texts in a more balanced way than the unprompted students who strongly focused on content knowledge. The study illustrates the potentials of learning journals as a method to support knowledge integration in history teacher education.  相似文献   

14.
Matching phonemes (speech sounds) to graphemes (letters and letter combinations) is an important aspect of decoding (translating print to speech) and encoding (translating speech to print). Yet, many teacher candidates do not receive explicit training in phoneme-grapheme correspondence. Difficulty with accurate phoneme production and/or lack of understanding of sound-symbol correspondence can make it challenging for teachers to (a) identify student errors on common assessments and (b) serve as a model for students when teaching beginning reading or providing remedial reading instruction. For students with dyslexia, lack of teacher proficiency in this area is particularly problematic. This study examined differences between two learning conditions (massed and distributed practice) on teacher candidates’ development of phoneme-grapheme correspondence knowledge and skills. An experimental, pretest-posttest-delayed test design was employed with teacher candidates (n?=?52) to compare a massed practice condition (one, 60-min session) to a distributed practice condition (four, 15-min sessions distributed over 4 weeks) for learning phonemes associated with letters and letter combinations. Participants in the distributed practice condition significantly outperformed participants in the massed practice condition on their ability to correctly produce phonemes associated with different letters and letter combinations. Implications for teacher preparation are discussed.  相似文献   

15.
Representations are often used in instruction to highlight key mathematical ideas and support student learning. Despite their centrality in scaffolding teaching and learning, most of our understanding about the tasks involved with using representations in instruction and the knowledge requirements imposed on teachers when using these aids is theoretical. In this study, we examine the task and knowledge demands for teaching integer operations with representations by analyzing teaching practice. Teaching integer operations is used as an intensity case, as integer operations are challenging for students, and teachers are often required to employ several representations to teach this topic. Following a practice-based approach while also taking prior literature into consideration, we first generate a list of tasks entailed in teaching with representations and then discuss the knowledge demands imposed on teachers to successfully undertake this work. We highlight these tasks and knowledge demands by analyzing and discussing an integer addition and an integer subtraction episode for each of two teachers, Bonita and Karen. Based on our analysis, we organize the generated knowledge components using the Mathematical Knowledge for Teaching framework. We conclude by drawing implications for teacher educators and curriculum developers.  相似文献   

16.
Early childhood curricula should be authentic and child-centered, however, many teachers still rely on direct instruction lessons. To better define how an integrated curriculum meets the needs of students, this study examined teacher talk and actions during instructional activities with first and second graders under two conditions: (1) subject-integrated social studies lessons of an integrated curriculum unit (experimental condition); and (2) single subject-focused mathematics lessons of a traditional separate subject curriculum (control condition). The mixed-methods study sought to define and compare characteristics of both curriculum approaches. Fourteen hours of observations were collected in each setting. In the integrated curriculum setting, the teacher was a facilitator of teamwork, offering choices, and giving praise; students made choices, decisions, and worked collaboratively. In the traditional setting, the teacher delivered direct instruction and controlled behavior; students followed directions, recalled knowledge, and worked individually. Less teacher energy was expended for behavior management in the integrated curriculum setting, indicating intrinsic motivation of students. Implementation of integrated curricula is recommended because of the student-centered focus that results in greater motivation, ownership, and teamwork, along with deeper knowledge connections. Because many factors hinder implementation, teachers need support when first teaching with this approach.  相似文献   

17.
ABSTRACT

The authors examined the effects of team-based learning (TBL) implemented in Grade 8 social studies classes on student content acquisition. Twenty-four classes were randomly assigned to treatment or comparison blocking on teacher. In the treatment classes teachers integrated TBL practices in the content instruction. The authors examined teacher instruction in the treatment and comparison classes during implementation. Results indicated TBL was implemented only in treatment classes and teachers demonstrated a novice level of implementation. The authors then examined the effects of the treatment implementation on measures of content acquisition. Significant differences in favor of the treatment condition were noted in the number of accurate content ideas produced in a written essay (effect size = .31). A small effect (.16) was also observed in the number of supporting details students provided in the essay but was not statistically significant. There was no benefit of the treatment on a multiple-choice test of content knowledge.  相似文献   

18.
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students’ understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high school participated in the study. The classes were randomly assigned as the experimental and control group. The control group (N?=?35) was taught by traditional instruction while the experimental group (N?=?37) was taught cooperative learning based on conceptual change approach instruction. Chemical Bonding Concept Test (CBCT) was used as pre- and post-test to define students’ understanding of chemical bonding concepts. After treatment, students’ interviews were conducted to observe more information about their responses. Moreover, students from experimental groups were interviewed to obtain information about students’ perceptions on cooperative work experiences. The results from ANCOVA showed that cooperative learning based on conceptual change approach instruction led to better acquisition of scientific conceptions related to chemical bonding concepts than traditional instruction. Interview results demonstrated that the students in the experimental group had better understanding and fewer misconceptions in chemical bonding concepts than those in the control group. Moreover, interviews about treatment indicated that this treatment helped students’ learning and increased their learning motivation and their social skills.  相似文献   

19.
20.
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made particular pedagogical and content decisions, and the implications for student’s conceptual learning. Using anthropological theories of conceptual travel, we traced salient ideas through instructional delivery and into student reasoning. Analysis showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both PD and teacher enactment. We discuss implications for the emerging field of climate change education.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号