首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]中提到了直线与椭圆位置判断的几何方法.通过研究表明,此种方法不能称为真正的几何法,且不够简单. 命题1 直线与圆位置关系判断的几何方法为: 设点P为直线Z上的任意一点,圆C的圆心为C,半径为r,且PC的最小值为d,则 当d>r时,直线与圆相离; 当d=r时,直线与圆相切; 当d<r时,直线与圆相交.  相似文献   

2.
李显权 《数学教学》2009,(11):35-36
文介绍了仿射变换的相关性质及其在解椭圆问题中的应用,受其启发,本文依据仿射变换不改变图形的同素性与接合性,推出一个直接判定直线与椭圆位置关系的实用定理,简捷明快地解答几道高考试题,供大家参考.  相似文献   

3.
文[1]曾介绍了判定直线与椭圆、双曲线位置关系的两个重要结论: 定理1直线上一点到椭圆两焦点的距离之和的最小值(1)小于长轴长则直线与椭圆相交;(2)等于长轴长则直线与椭圆相切;(3)大于长轴长则直线与椭圆相离.  相似文献   

4.
判定直线与椭圆位置关系的常规方法是把直线方程代入椭圆方程,得到关于x的一元二次方程,然后用判别式法求解之;其运算往往比较复杂.本文介绍两种判定直线和椭圆位置关系的非常规方法,并简要介绍这两种方法的应用.  相似文献   

5.
贵刊94年第3期《判断直线和椭圆位置关系的又一方法》,读后很受启发.经本人进一步研究,得到了直线与椭圆位置关系判断一个充要条件.应用这一充要条件解决直线与椭圆位置关系有关的一类问题,既简单又方便.  相似文献   

6.
大家知道,直线与圆的位置关系判断既可以用代数方法(即联立两曲线方程,通过判别式来断定其位置关系),也可以用几何方法(即通过比较圆心到直线的距离与圆半径的大小来判断位置关系)。而直线与椭圆的位置关系则通常只用代数方法来判断,能否用几何方法判断。下面我们通过“点变换”将椭圆变为圆后,寻求直线与椭圆的位置关系的几何判断方法。  相似文献   

7.
如何在双基的平台上,培养学生对简单数学问题的探究扩展能力,是数学教学改革对教师提出的新挑战,也是不断反思与实践的新课题,现从两个方面谈起:1对直线与椭圆、双曲线位置关系的探索  相似文献   

8.
在判定椭圆与直线的位置关系时,常常将椭圆方程与直线方程联立,消去一个变量而建立另一个变量的一元二次方程,再通过其判别式△〉0,△=0,△〈0来判定.由于联立方程组消元过程中,运算麻烦,容易出错,若能理解并掌握以下方法,会给求解此类问题带来很大方便,本文就介绍这一判定方法,并给出一个判定法则,同时,结合实例谈谈此法则在解题中的妙用.  相似文献   

9.
文[1]利用椭圆、双曲线的两焦点到直线l的距离与b~2的大小关系,来判定它们的位置关系.本文则根据椭圆、双曲线的定义给出直线与椭圆、双曲线的位置关系的判定方法,似更为简便.  相似文献   

10.
直线与二次曲线的位置关系,可以由它们的方程所组成的方程组解的个数,及二次曲线的形状来确定,讨论如下:设直线L与二次曲线M的方程分别为:L:A1x+B1y+C1=0(1)M:Ax2+Bxy+Cy2+Dx+Ey+F=0(2)其中A1、B1至少有一个不等于零。A、B、C至少有一个不等于零。1当B1≠0时,令-A1/B1=k,-C1/B1=b则方程(1)化为:y=kX+b,再把它代入方程(2)并整理得:(A+Bk+Ck2)x2+(Bb+2bc+D+EK)x+b2C+bE+F=0(3)1.1当A+Bk+Ck2≠0时,方程(3)是关于x的一元二次方程。其判别式Δ为:Δ=(Bb+2bC+D+Ek…  相似文献   

11.
直线与椭圆、双曲线位置关系的一种新的判定方法   总被引:1,自引:0,他引:1  
我们知道 ,针对圆的特殊几何性质 ,可以用圆心到直线的距离与圆的半径的大小关系来判定直线和圆的位置关系 .实际上 ,结合椭圆和双曲线的第一定义 ,直线和椭圆、双曲线的位置关系的判定也有类似的结论 .引理 1 平面上 ,两点F1 、F2 在直线l的同侧 ,点F′1 和点F1 关于直线l轴对称 ,点P在直线l上 ,则 |PF1 | + |PF2 |≥|F′1 F2 |(如图 1) .(证明略 )定理 1 直线上一点到椭圆两焦点的距离的和的最小值 (1)小于长轴长 ,则直线与椭圆相交 ;(2 )等于长轴长 ,则直线与椭圆相切 ;(3 )大于长轴长 ,则直线与椭圆相离 .图 1 …  相似文献   

12.
我们知道,针对圆的特殊几何性质,可以用圆心到直线的距离与圆的半径的大小关系来判定直线和圆的位置关系. 实际上,结合椭圆和双曲线的第一定义,直线和椭圆、双曲线的位置关系的判定也有类似的结论.  相似文献   

13.
直线与二次曲线位置关系的判别,现在一般的参考资料都是利用判别式.众所周知,利用“△”法计算量往往很大,那么有没有比较简便一点的方法呢?受直线与圆位置关系的距离判别法的启发,可得到以下两个定理.定理1设双曲线的虚半轴为b,两个焦点F1,F2到直线l(l不平行也不重合于双曲线的两渐近线)的距离分别为d1,d2(1)若F1,F2在l的异侧,则l与双曲线相交、相切和相离的充要条件分别是:d1·d2<b2,d1·d2=b2和d1·d2>b2.(2)若F1,F2在l上或l的同侧,则l与双曲线必相交.证明设双曲线方程为\一头一1,(l)一。。——,——…  相似文献   

14.
<正>1问题的提出众所周知,直线l与圆⊙C的位置关系最简单的判断方法是:用圆心C到直线l的距离d与半径R的关系得出,即当且仅当(1)d>R时,直线l与圆⊙C相离;(2)d=R时,直线l与圆⊙C相切;(3)d 相似文献   

15.
关于直线与椭圆的位置关系的判定和求椭圆的切线,通常的方法是通过消元转化为一个关于x或y的二次方程,并应用判别式来完成。本文定义一种新的“距离”,并导出相应的“原点到直线的距离”公式,从而给出这类问题的另一种解法。  相似文献   

16.
对于直线方程:x_0x/a~2+y_0y/b~2=1,文[1]中已证明:它是过平面上任一点p_0(x_0,y_0)(原点除外)的直线与椭圆的两个交点为切点的两切线的交点的轨迹方程,同时还指出了它的两个有趣的性质。本文将继续研究它的另一  相似文献   

17.
例1在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为2+221/2.记动点C的轨迹为曲线W.(1)求W的方程;(2)经过点(0,21/2)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;(3)已知点M(2,0),N(0,1),在(2)的条件下,是否存在常数k,使得向量(?)+(?)与(?)共线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)设C(x,y),因为| AC |+| BC |+| AB |=2+221/2,| AB |=2所以| AC |+| BC|=221/2>2,所以由定义知,动点C的轨迹是以A、B为焦点,长轴长为221/2的椭圆除去与x轴的两个交点.所以a=21/2,c=1.所以b2=a2-c2  相似文献   

18.
直线与椭圆的位置关系有相交、相切和相离三种位置关系.处理此类问题的通常方法是:联立直线与椭圆方程,  相似文献   

19.
文[1]介绍了用向量法判定直线与圆锥曲线的位置关系,受文[1]启发,笔者发现用向量法判定直线与圆锥曲线的位置关系的另一种方法,现介绍如下:定理1:设椭圆短半轴长为b,长轴长为A′A,直线l与过A′或A且垂直于A′A的直线分别相交  相似文献   

20.
本刊2013年第9期《课例:直线与椭圆的位置关系》中,当学生遇到直线方程与椭圆方程联立所得的一元二次方程的判别式大于零的运算较复杂时,为了寻找简单方法,通过师生讨论,利用仿射变换转化为直线与圆的位置关系问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号