首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The purpose of this study was to investigate the effects of using an internal versus external focus of attention during resistance training on muscular adaptations. Thirty untrained college-aged men were randomly assigned to an internal focus group (INTERNAL) that focused on contracting the target muscle during training (n?=?15) or an external focus group (EXTERNAL) that focused on the outcome of the lift (n?=?15). Training for both routines consisted of 3 weekly sessions performed on non-consecutive days for 8 weeks. Subjects performed 4 sets of 8–12 repetitions per exercise. Changes in strength were assessed by six repetition maximum in the biceps curl and isometric maximal voluntary contraction in knee extension and elbow flexion. Changes in muscle thickness for the elbow flexors and quadriceps were assessed by ultrasound. Results show significantly greater increases in elbow flexor thickness in INTERNAL versus EXTERNAL (12.4% vs. 6.9%, respectively); similar changes were noted in quadriceps thickness. Isometric elbow flexion strength was greater for INTERNAL while isometric knee extension strength was greater for EXTERNAL, although neither reached statistical significance. The findings lend support to the use of a mind–muscle connection to enhance muscle hypertrophy.  相似文献   

2.
The aim of this study was to determine whether endurance training in athletes induces airway inflammation and pulmonary function disorders. Respiratory pattern and function were analysed in ten healthy endurance runners at rest, during sub-maximal exercise, and during the recovery. Inflammatory cells and metabolites (histamine, interleukin-8, and leukotriene E(4)) were measured in sputum at rest and after exercise. The experiments were conducted on three different occasions (basic endurance training, pre-competitive and competitive periods). In spite of the absence of post-exercise spirometric changes and respiratory symptoms, airway cells counts and inflammatory markers changed significantly. At the beginning of the experiment, athletes' induced sputum showed an abundance of macrophages compared with neutrophils. We found a high percentage of neutrophils during the pre-competitive and competitive periods of the sport season (41% and 37%), a significant increase in macrophage counts during the pre-competitive period (51%), and a significant rise in total cells, interleukin-8, leukotriene E(4), and histamine during the competitive period. In conclusion, one year's training increased markers of inflammation in the airways of endurance runners without symptoms or changes in pulmonary function, suggesting that airway inflammation is of insufficient magnitude to markedly impact lung function in healthy athletes.  相似文献   

3.
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (<2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is >12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   

4.
Altitude and endurance training   总被引:4,自引:0,他引:4  
Rusko HK  Tikkanen HO  Peltonen JE 《Journal of sports sciences》2004,22(10):928-44; discussion 945
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (< 2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   

5.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

6.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(?max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(?max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

7.
8.
The main purpose of this study was to evaluate running kinematic characteristics and foot strike patterns (FSP) during early and late stages of actual and common high-intensity intermittent training (HIIT): 5 × 2000 m with 120-s recovery between runs. Thirteen healthy, elite, highly trained male endurance runners participated in this study. They each had a personal record in the half-marathon of 70 ± 2.24 min, and each had a minimum experience of 4 years of training and competition. Heart rate (HR) and rate of perceived exertion (RPE) were monitored during HIIT. High levels of exhaustion were reached by the athletes during HIIT (HRpeak: 174.30 bpm; RPE: 17.23). There was a significant increase of HRpeak and RPE during HIIT; nevertheless, time for each run remained unchanged. A within-protocol paired t-test (first vs. last run) revealed no significant changes (≥ 0.05) in kinematics variables and FSP variables during HIIT. There were no substantial changes on kinematics and FSP characteristics in endurance runners after fatigue induced by a HIIT. Only the minimum ankle alignment showed a significant change. The author suggests that these results might be due to both the high athletic level of participants and their experience in HIIT.  相似文献   

9.
The aim of this work was to identify, synthesize and evaluate the results of randomized controlled trials examining the effects of resistance training on performance indicators in previously trained endurance runners. A database search was carried out in PubMed, Science Direct, OvidSPMedLine, Wiley, Web of Science, ProQuest and Google Scholar. In accordance with the PRISMA checklist, 18 published articles dated prior to May 2016 involving 321 endurance runners were reviewed using the PEDro scale. Resistance training led to general improvements in muscular strength, running economy, muscle power factors, and direct performance in distances between 1,500 and 10,000 m. Such improvements were not accompanied by a significant increase in body mass or signs of overtraining. However, improvements did not occur in all cases, suggesting that they might depend on the specific characteristics of the resistance training applied. Although current evidence supports the effectiveness of resistance training to improve performance in already trained endurance runners, the methodological inconsistencies identified suggest that the results should be interpreted with caution. Future studies ought to investigate the benefits of resistance training in endurance runners while considering the existence of possible differentiated effects based on the specific characteristics of the resistance training carried out.  相似文献   

10.
ABSTRACT

This study tested the effect of 8-week endurance and resistance training programmes on cardiovascular stress responses, life stress, and coping. Fifty-two untrained but healthy female students were randomised to an 8-week endurance training, an 8-week resistance training, or a wait list control group. Before and after the training intervention, we assessed the groups’ cardiorespiratory fitness (VO2max test), self-reported life stress, coping strategies and cardiovascular reactivity to and recovery from a standardised laboratory stressor. Both endurance and resistance training programmes caused physiological adaptation in terms of increased VO2max after the intervention. For stress and coping parameters, participants in the training groups improved cardiovascular recovery from stress and reported having less stress in their everyday life after the intervention than participants in the control group, while the two training groups did not differ from each other. We did not find any significant differences in heart rate reactivity and coping strategies between the study groups. These results partly support that exercise training has stress-reducing benefits regardless of the type of exercise. Both endurance and resistance exercise activities may be effectively used to improve stress regulation competence while having less impact on changing specific coping strategies.  相似文献   

11.
应重视对少年速滑运动员的有氧耐力训练   总被引:1,自引:1,他引:0  
少年速滑运动员训练的成败,是我国速滑项目早日赶上世界先进水平的关键。主要论述了少年速滑运动员进行有氧耐力训练的重要性,进行有氧耐力训练的有效方法及训练时应注意的问题等。以期为基层教练员指导少年速滑运动员训练提供参考。  相似文献   

12.
We conducted a systematic literature review and meta-analysis to assess the chronic effects of the sequence of concurrent strength and endurance training on selected important physiological and performance parameters, namely lower body 1 repetition maximum (1RM) and maximal aerobic capacity (VO2max/peak). Based on predetermined eligibility criteria, chronic effect trials, comparing strength-endurance (SE) with endurance-strength (ES) training sequence in the same session were included. Data on effect sizes, sample size and SD as well other related study characteristics were extracted. The effect sizes were pooled using, Fixed or Random effect models as per level of heterogeneity between studies and a further sensitivity analyses was carried out using Inverse Variance Heterogeneity (IVHet) models to adjust for potential bias due to heterogeneity. Lower body 1RM was significantly higher when strength training preceded endurance with a pooled mean change of 3.96 kg (95%CI: 0.81 to 7.10 kg). However, the training sequence had no impact on aerobic capacity with a pooled mean difference of 0.39 ml.kg.min?1 (95%CI: ?1.03 to 1.81 ml.kg.min?1). Sequencing strength training prior to endurance in concurrent training appears to be beneficial for lower body strength adaptations, while the improvement of aerobic capacity is not affected by training order.  相似文献   

13.
ABSTRACT

During the course of a training programme, runners will typically increase running velocity and volume possibly encountering fatigue during a run, which is characterised as a feeling of general tiredness. The purpose of the current study was to identify whether or not level of perceived fatigue affects coordination and coordination variability in healthy runners during the recovery velocity of an endurance interval run. A total of 20 endurance runners completed a 1-hour run that included running velocity intervals at 75% of estimated 10 k race pace (5 minutes) and estimated 10 k race pace (1 minute). After each run, participants completed a fatigue questionnaire and were grouped based on their post-run self-reported perceived fatigue. 3D motion capture data were collected during the run and analysed to generate coordination patterns and variability of the patterns as dependent variables. Multiple mixed model ANOVAs were conducted to test for differences between perceived fatigue groups. Coordination and variability differences were reported in a number of couplings during transition phases (late and early stance) and events (toe-off and foot contact) of the gait cycle. It was concluded that the level of perceived fatigue affected coordination and coordination variability during the recovery velocity of a 1-hour interval run.  相似文献   

14.
PurposeThe purpose of this study was to compare the effects of intermittent sprint training and plyometric training on endurance running performance.MethodsFourteen moderately trained male endurance runners were allocated into either the intermittent sprint training group (n = 7) or the plyometric training group (n = 7). The preliminary tests required subjects to perform a treadmill graded exercise test, a countermovement jump test for peak power measurement, and a 10-km time trial. Training included 12 sessions of either intermittent sprint or plyometric training carried out twice per week. On completion of the intervention, post-tests were conducted.ResultsBoth groups showed significant reduction in weekly training mileage from pre-intervention during the intervention period. There were significant improvements in the 10-km time trial performance and peak power. There was also significant improvement in relative peak power for both groups. The 10-km time trial performance and relative peak power showed a moderate inverse correlation.ConclusionThese findings showed that both intermittent sprint and plyometric training resulted in improved 10-km running performance despite reduction in training mileage. The improvement in running performance was accompanied by an improvement in peak power and showed an inverse relationship with relative peak power.  相似文献   

15.
加强优秀散打运动员专项耐力训练方面的研究是进一步提高散打竞技水平的重要途径之一。通过对部分优秀散打运动员专项耐力调查分析、根据散打运动专项耐力特点,提出散打运动专项耐力训练方法的几点建议,即针对不同队员制订不同的训练方法、合理安排运动负荷、遵循专项训练深化原则和训练形式多样化。  相似文献   

16.
目的:通过对8-12周游泳耐力训练前后大鼠肝组织SOD、MDA、线粒体膜电位以及肝细胞凋亡率的测定及分析,考察长期耐力训练对于高脂饮食诱导大鼠肝细胞凋亡的影响与机制,为运动预防NASH提供新的切入点。方法:采用SD雄性大鼠44只,适应性喂养1周后,随机分为6组:8周对照组、8周高脂组、8周高脂运动组、12周对照组、12周高脂组和12周高脂运动组。对照组给予普通饲料喂养,高脂组和高脂运动组给予高脂饲料喂养;对照组和高脂组不施加运动干预,高脂运动组大鼠于每日上午8~9时进行无负重游泳运动,每周5次。运动负荷为第1周每次游泳30min,第2周60min,第3周90min,然后以此运动量一直保持到12周结束。用流式细胞仪法检测8周和12周耐力训练后肝细胞自由基代谢、线粒体膜电位和细胞凋亡变化。结果:8周高脂运动组的肝细胞凋亡率显著高于高脂组(P〈0.05),12周高脂运动组则显著低于高脂组(P〈0.05);8周高脂运动组肝脏SOD显著高于高脂组(P〈0.05),12周也显著高于高脂组(P〈0.05);8周高脂运动组MDA显著低于高脂组(P〈0.05),12周组非常显著低于高脂组(P〈0.01);8周高脂运动组线粒体膜电位显著高于高脂组(P〈0.05),12周组非常显著高于高脂组(P〈0.01)。结论:长期有氧耐力训练可以通过降低脂质过氧化物的生成和加速过氧化物的清除,提高肝脏的抗氧化能力,使肝细胞线粒体产生适应性改变,膜电位升高,最终抑制高脂饮食诱导NASH大鼠肝细胞凋亡率的显著升高。  相似文献   

17.
针对国内800m跑训练注重发展呼吸及心血管系统的机能,忽略肌肉代谢能力的训练的现状,借鉴国外成功经验,制定了提高800m跑运动员肌肉代谢能力的综合力量耐力的训练方案。  相似文献   

18.
We hypothesised that habitual physical activity (PA) together with progressive endurance training contributes to the differences in training response (Δ[V(·)]O(2max)) in healthy and physically active male participants. Twenty volunteers (age 30±3 years and [V(·)]O(2max) 54±7 ml·kg?1·min?1) participated in an eight-week training program which included four to six heart rate-guided exercise sessions weekly. PA data over the whole period were collected by an accelerometer-equipped wristwatch. Individual relative intensities of endurance training and PA were separately determined by adjusting to [V(·)]O(2max) reserve and calculated as mean daily duration (min) of training and PA at light, moderate, high and very high intensity levels. [V(·)]O(2max) increased 6.4±4.1% (p < 0.0001) during the training period. Δ[V(·)]O(2max) correlated with the amount of habitual PA that was mainly of light intensity (r = 0.53, p = 0.016), but not with the duration of moderate, high or very high intensity PA (p = ns for all). Age, body mass index, and daily amount of training at any intensity level of exercise were not related to Δ[V(·)]O(2max) (p = ns for all). In conclusion, a high amount of habitual PA together with prescribed endurance training was associated with good training response in physically active males.  相似文献   

19.
井兰香  刘宇 《体育学刊》2012,(5):140-144
为测试超等长阻力训练前后原地垂直纵跳动作下肢各关节角速度及角加速度,计算下肢各关节角刚度,观察超等长阻力训练对下肢各关节角动力学的影响。将16名青年男子篮球运动员随机分成超等长阻力训练组和常规训练对照组。采用VICON和三维测力台采集每个动作的运动学和动力学数据,计算下肢各关节角速度及角加速度,并经逆动力学方法计算下肢净关节力矩。结果可见,超等长阻力训练组髋、踝关节角速度和角刚度明显高于对照组,膝关节角速度及角刚度两组没有明显差异;超等长阻力训练组髋、膝、踝关节角加速度均显著高于对照组。结果说明超等长阻力训练可降低拉长-缩短周期支撑时间、缩短摊还期、增强肌肉-肌腱复合体能量转换能力、提高下肢肌肉爆发力。适于需要关节角速度、角加速度及爆发力的项目。  相似文献   

20.
Abstract

The aim of this study was to determine whether endurance training in athletes induces airway inflammation and pulmonary function disorders. Respiratory pattern and function were analysed in ten healthy endurance runners at rest, during sub-maximal exercise, and during the recovery. Inflammatory cells and metabolites (histamine, interleukin-8, and leukotriene E4) were measured in sputum at rest and after exercise. The experiments were conducted on three different occasions (basic endurance training, pre-competitive and competitive periods). In spite of the absence of post-exercise spirometric changes and respiratory symptoms, airway cells counts and inflammatory markers changed significantly. At the beginning of the experiment, athletes' induced sputum showed an abundance of macrophages compared with neutrophils. We found a high percentage of neutrophils during the pre-competitive and competitive periods of the sport season (41% and 37%), a significant increase in macrophage counts during the pre-competitive period (51%), and a significant rise in total cells, interleukin-8, leukotriene E4, and histamine during the competitive period. In conclusion, one year's training increased markers of inflammation in the airways of endurance runners without symptoms or changes in pulmonary function, suggesting that airway inflammation is of insufficient magnitude to markedly impact lung function in healthy athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号