首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
学生在学习科学课程前,头脑中存在着前科学概念和错误概念,这些概念有很强的顽固性。根据建构主义的观点,学生的错误概念不可能通过传统的知识传授方式由科学概念所代替,而必须依靠学生自己通过概念转变学习,实现由错误概念向科学概念的转变。促进学生前科学概念和错误概念转变的概念转变学习有三步教学策略:揭示学生的前科学概念,这是实现概念转变学习的前提;引发学生的认知冲突,这是实现概念转变学习的契机和动力;鼓励认知顺应,这是实现概念转变学习的关键。  相似文献   

2.
物理教学中前概念的运用探析   总被引:1,自引:0,他引:1  
物理前概念是学生在学习科学物理概念之前对物理现象和规律的认识和理解,物理前概念广泛存在而且根深蒂固,对学生形成与掌握科学的物理概念影响极大。由论述物理前概念的特征及其对物理学习的影响出发,提出在物理教学中转变学生的前概念的教学策略,使学生有效地掌握科学物理概念。  相似文献   

3.
建构与前概念   总被引:20,自引:0,他引:20  
赵强  刘炳升 《物理教师》2001,22(7):3-4,9
中学物理教学中,前概念在学生头脑中表现得广泛而顽固,对学生形成与掌握科学的物理概念影响极大.根据建构主义的教学思想,结合教学实践,阐述中学物理学习中的前概念问题,以及教师如何帮助学生有效地转变前概念、建构科学概念的策略。  相似文献   

4.
小学生在接受科学概念学习之前已经具备了一定的前概念,且这种前概念直接制约或影响着教师的课堂教学,和学生科学概念的形成更是有着密不可分的关系。学生学习科学概念单纯靠传授是无效的,科学概念学习的最基本方式是基于原有经验的概念转变学习。因此科学学习可以看做一种概念转变的过程,科学课堂很多时候就是在学生已有概念  相似文献   

5.
冯伟 《教育与职业》2006,(23):181-182
前概念是前科学概念的简称,是指个体在没有接收正式的科学概念之前,对日常生活中所感知的现象,通过长期的经验积累与辨别式学习而形成的对事物的非本质的认识。本文在建构主义理论的指导下,分析了前概念的特点,提出了物理教学中前概念转变的具体策略。  相似文献   

6.
生物教学中错误概念的诊断与矫治   总被引:8,自引:0,他引:8  
建构主义认为,科学概念的学习就是学生由前概念向科学概念的转变过程。西方学 者对此做了大量的研究。错误概念对生物学概念学习有极大影响,错误概念的诊断技术与 方法包括:概念转变学习;促进错误概念转变教学策略。  相似文献   

7.
李宇泓 《教师》2012,(35):84-84
概念转变学习理论认为,学习就是学生原有观念的改变、发展和重建,是学生由前科学概念向科学概念的转变过程。基于概念转变学习理论,科学教学的有效策略是要高度重视学生已有的知识经验;善于引发认知冲突;要关注学生构建的概念网络结构;注重情境创设,激发学习动机。  相似文献   

8.
夏海宁  周彦  陈聪 《考试周刊》2010,(33):189-190
学生在接受系统的教育之前,已经持有前概念,学生自身持有的前概念促进或阻碍着学生科学概念的形成。揭示学生的前概念及其转变规律,被认为是科学教育中的核心问题,是提高科学教育质量的关键。本文旨在以教育学、建构主义、结构课程理论为指导分析学生前概念的特点、影响前概念形成的各种因素,提出了物理学习中前概念转变的具体策略。  相似文献   

9.
学生受日常生活、直觉经验和先前信息影响可能会产生前科学概念,这会对科学概念的学习产生较大影响。结合具体的实践经验,论述了从探知前科学概念到引发认知冲突、激发科学思维、利用直观手段等教学策略转变前科学概念的方法。  相似文献   

10.
概念是思维的工具,是人类认识世界,表达思想的载体。概念转变模型研究的是概念动态的转变过程,即由前概念向科学概念的转变过程,是一个积极建构的学习过程。探讨了概念转变模型的发展历史,阐述了两个主要学术流派的概念转变模型,即认知为基础的概念转变模型和以社会文化为基础的概念转变模型;同时,还论述了概念模型理论的新趋势,提倡在构建科学的概念模型时,必须考虑认知冲突和社会文化的融合,强调自主学习、合作学习和交互式学习三位一体的课堂教学模式。  相似文献   

11.
儿童在学习科学概念的过程中常常会出现三种理解偏差倾向:概念的完全曲解、概念混淆、概念窄化或概念泛化。其影响因素与学生认知发展规律、先前知识储备、学习材料、组织方式及教学情境等有关,但最核心影响因素是日常概念与教学情境。概念卡通依据儿童认知思维发展特点,结合日常生活经验与教学内容,将日常概念与科学概念的典型变式以直观、生...  相似文献   

12.
This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the quantitative data, six students from each group were interviewed to evaluate their conceptual change, correct concepts and scientific reasoning. Results indicate that the experimental group’s students significantly outperformed the conventional group on the Combustion Achievement Test (CAT), Scientific Reasoning Test (SRT) and Combustion Dependent Reasoning Test (CDRT). Moreover, the experimental group’s students use higher levels of scientific reasoning more frequently and changed their alternative concepts more successfully than did the conventional group. Furthermore, once the experimental group’s students’ successfully changed their conceptions, their concepts tended to be more stable than the conventional group’s students, even after the 6th week of learning. These results demonstrate that combining conceptual change and scientific reasoning indeed improves students’ conceptual change and scientific reasoning ability more effectively than conventional instruction.  相似文献   

13.
This pilot study investigated how a brief professional development session on the science of learning impacted teachers' attributions of usefulness to both scientific and performative concepts about teaching. Ratings were collected from teachers attending five events across the United Kingdom (N = 585) before and after receiving a 90‐min training session. Initial ratings of scientific concepts were positively correlated with age, while initial ratings of performative concepts were negatively correlated with years of experience. Immediately following professional development, the value teachers attributed to scientific concepts for understanding their practice increased, while their valuing of performative concepts decreased. A follow‐up study with a subsample (N = 153) revealed the impact was reduced but persisted 6–12 weeks later. Results are discussed in terms of the potential for a scientific understanding of learning to empower educators as expert professionals.  相似文献   

14.
基于建构主义的数学概念转变学习   总被引:9,自引:0,他引:9  
概念转变学习是学生原有概念的改变、发展和重建,是学生的前概念向科学概念的转变.日常概念、概念意象、迁移等因素是数学概念转变学习中产生错误概念的主要原因.根据概念转变的途径、机制和条件理论,概念转变学习的教学策略:(1)了解学生已有知识经验,促进日常概念向科学的数学概念转变;(2)引发认知冲突,辨清新旧界限以实现数学概念转变学习;(3)重视概念生成的凝聚,构建概念网络.  相似文献   

15.
Students sometimes misunderstand or misinterpret scientific content because of persistent misconceptions that need to be overcome by science education—a learning process typically called conceptual change. The acquisition of scientific content matter thus requires a transformation of the initial knowledge-state of a common-sense picture of the world to an outcome state of a scientific conception articulated with scientific concepts, which the learner did not possess prior to learning. This paper introduces a taxonomy based on the idea that multiple operational criteria are needed to evaluate conceptual change into scientific concepts. Three sets of criteria—qualitative, quantitative and experimental—are identified, and their interrelations in the process of conceptual change are explored.  相似文献   

16.
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one‐group pre‐, post‐, and retention quasi‐experimental design was used in the study. All students received tests for Atomic Achievement, Scientific Reasoning, and Atomic Dependent Reasoning before, 1 week after, and 8 weeks after learning. A total of 18 students, six from each class, were each interviewed for 1 hour before, immediately after, and 2 months after learning. A flow map was used to provide a sequential representation of the flow of students' scientific narrative elicited from the interviews, and to further analyze the level of scientific reasoning and conceptual change. Results show students' concepts of atoms, scientific reasoning, and conceptual change made progress, which is consistent with the interviewing results regarding the level of scientific reasoning and quantity of conceptual change. This study demonstrated that students' conceptual change and scientific reasoning could be improved through the SCCR learning project. Moreover, regression results indicated students' scientific reasoning contributed more to their conceptual change than to the concepts students held immediately after learning. It implies that scientific reasoning was pivotal for conceptual change and prompted students to make associations among new mental sets and existing hierarchical structure‐based memory. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 91–119, 2010  相似文献   

17.
18.
本文介绍了孙爱群教授如何转变学生的思想,充分调动学生学习的积极性,从而使“要我学”转变到“我要学”和“我乐学”。充分尊重学生的主体地位与充分发挥老师的主导作用相结合,业务教学与思想教育相结合,理论教学与实践教学相结合,课堂教学与科学研究相结合,严谨的科学态度与和谐的教学艺术相结合。从而使教与学紧密结合,教学气氛融洽轻松,教学效果突出。  相似文献   

19.
For the past two decades, a growing amount of research has shown that the use of analogies in science teaching and learning promotes meaningful understanding of complex scientific concepts (Gentner, 1983 ; Glynn, 1989 ; Harrison & Treagust, 1993 ; Wong, 1993 ). This article presents a study in which multiple analogies were used as scaffolding to link students' prior understanding of daily life events to knowledge of the scientific domain. The study was designed to investigate how multiple analogies influence student learning of a complex scientific concept: the electric circuit. We used several analogies in a set of learning materials to present the concepts of parallel and series circuits. Thirty‐two fourth graders participated in this study and were randomly assigned to four groups. The four groups were named nonanalogy (control), single analogy, similar analogies, and complementary analogies, according to the materials they used in this study. The results demonstrated that using analogies not only promoted profound understanding of complex scientific concepts (such as electricity), but it also helped students overcome their misconceptions of these concepts. In particular, we found that the reason the students had difficulty understanding the concept of electricity was because of their ontological presupposition of the concept. Implications for teaching and learning are discussed. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 429–464, 2005  相似文献   

20.
基于理科课程的分科设置和学生一般能力形成的事实,结合成年人的认知体验,在解析学科与科学等系列概念间差异的基础上,本文提出学生大脑“自重整假设”及悟性学习是人类天然认知方式的观点。从引导学生的开悟方向入手,探讨如何提高理科学科核心素养共同成分“科学思维”的培养效率。以物理学科为例,从学科素养和科学素养融合发展的视角,细致梳理如何通过悟性学习使学生在科学思维、科学本质认识、科学方法等多方面获得提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号