首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、判断三角形的形状例1已知a、b、c分别是△ABC的三条边,且a~2+ac=b~2+bc,试判断△ABC的形状.解析:由a~2+ac=b~2+bc.得a~2- b~2+ac-bc=0.将此式的左边分解因式,得(a-b)(a+b+c)=0.因为a、b、c是△ABC的三条边.所以a+b+b>0.故a-b=0.从而a=b,于是△ABC是等腰三角形.  相似文献   

2.
因式分解与解三角形是两个重要内容,在解题时往往需要将这两者有机联系起来,才能相得益彰.一、求三角形的边长例1不等边△ABC的三边长是正整数a,b,c,c又是奇数且满足a2+b2-6a-8b+25=0,求c的值.解由a2+b2-6a-86+25=0,得(a-3)2+(b-4)2=0.∵a=3,b=4;又∵10.  相似文献   

3.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

4.
三角形既可以按边分类也可以按角分类,当我们得到了它们的边(角)之间的关系或最大角的度数时,就能据此判定三角形的形状.下面向大家介绍判断三角形形状的多种方法,相信对开拓同学们的思维,提高解题技能和技巧会有一定的帮助.一、利用因式分解进行判定例1在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,a~2+2ab=c~2+2bc,试判定△ABC的形状.解析∵a~2+2ab=c~2+2bc,a~2-c~2+2ab-2bc=0,即(a-c)(a+c)+2b(a-c)=0,  相似文献   

5.
《数学通报》1580题:设△ABC的三边长分别是a,b,c,内切圆半径为r,求证:1/(a~2)+1/(b~2)+1/(c~2)≤1/(4r~2).(2005年第11期).原证:令a=y+z,b=z+x,c=x+y,并设s、△分别表示△ABC的半周长和面积,则易知x>0,y>0,x>0.并有s=1/2(a+b+c)=x+y+z,r=  相似文献   

6.
第 6届 IMO第 2题是设 a,b,c是△ ABC的三边长 ,求证a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≤ 3 abc (1)受启发 ,本文得到 (2 )式的如下对偶形式定理 1 设 a,b,c,r是△ ABC的三边长及内切圆半径 ,则有a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≥ 12 r(a + b + c) (2 )证明 :记 p =12 (a + b + c) ,R为△ ABC的外接圆半径 ,S为△ ABC的面积 ,由海伦公式 S = p (p -a) (p -b) (p -c) =rpabc =4RS =4Rrp得左边 =2 a2 (p -a) + 2 b2 (p -b) +2 c2 (p -c)≥2× 3 3 a2 b2 c2 (p -a) (p -b) (p -c) =63 16R2 r2 p2 .r2 p =…  相似文献   

7.
在△ ABC中 ,角 A,B,C所对的边分别为 a,b,c,S是△ ABC的面积 ,由半角公式tan α2 =1 - cosαsinα 及余弦定理易得一组正切公式 :tan A2 =a2 - ( b- c) 24 S ,tan B2 =b2 - ( c- a) 24 S ,tan C2 =c2 - ( a- b) 24 S .由余弦定理可得一组余切公式 :cot A=b2 + c2 - a24 S ,cot B=c2 + a2 - b24 S ,cot C=a2 + b2 - c24 S .这两组公式结构对称 ,易于记忆 ,作用类似于正弦定理、余弦定理 ,用于解一些三角题可达到事半功倍的效果 .本文精选几例 ,以飨读者 .例 1 设 a,b,c是三角形的三条边 ,α,β,γ是这三条边的对角 ,如果 a2 + b2 …  相似文献   

8.
<正>利用勾股定理的逆定理,可以根据三角形的三边判别某三角形是否为直角三角形.在使用该定理时,如果把已知条件适当变形,可以化复杂为简单.一、两边同时平方例1若△ABC的三边a、b、c满足a+b=10,ab=18,c=8,试判别△ABC的形状.析解∵a+b=10,∴(a+b)2=100,∴a2+2ab+b2=100.把ab=18代入,得  相似文献   

9.
实系数一元二次方程 ax2 + bx+ c=0 ( a≠ 0 )的判别式 Δ=b2 - 4ac是中学数学中的基本内容 ,它在代数和几何中都有着广泛的应用 .下面让我们举些实例 ,说明判别式在解一类平面几何题中的应用 ,以供同行交流参考 .1 判别三角形形状例 1 设△ABC的三边为 a,b,c,并满足 b+ c=4 ,bc=a2 - 6 a+ 1 3,试问△ ABC是什么三角形 ?并证明你的结论 .解 由题意得 b,c是一元二次方程 x2 -4x+ ( a2 - 6 a+ 1 3) =0的两个实数根 ,∴Δ =4 2 - 4( a2 - 6 a+ 1 3)=- 4( a- 3) 2 ≥ 0 .∴ a=3,代入方程得 x2 - 4x+ 4 =0 .∴△ ABC为等腰三角形 .例 2 …  相似文献   

10.
一、余弦定理的向量证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a~2=b~2+c~2-2bccosA,b~2=a~2+c~2-2accosB,c~2=a~2+b~2-2abcosC(2011年陕西省理科(文科)第18题"叙述并证明余弦定理").(直接来原于课  相似文献   

11.
设a,b,c,Δ与a′,b′,c′,Δ′分别代表△ABC与△A′B′C′的三边与面积,则著名的Pedoe不等式是: a′~2(-a~2+b~2+c~2)+b′~2(a~2-b~2+c~2)+c′~2(a~2+b~2-c~2)≥16ΔΔ′,式中等号当且仅当△ABC∽△A′B′C′时成立。文[1]证明了: 设△.表示a~(1/2),b~(1/2),c~(1/2)组成的三角形的面积,则有  相似文献   

12.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

13.
第一试一、选择题 (每小题 6分 ,共 3 6分 )1 对于一切实数x ,当实数a、b、c(a≠ 0 ,且a 相似文献   

14.
三角形与一元二次方程的结合是形与数的一种另类结合,它们在知识上的相互渗透常能整合出一些鲜活的题例. 一、求三角形的周长例1 已知三角形的三边长a、b、c满足b+c=8,bc=a2-12a+52.求这个三角形的周长. 析解:由已知条件得,b、c是关于x的一元二次方程x2-8x+a2-12a+52=0的两根.  相似文献   

15.
题目(第三届北方数学奥林匹克邀请赛)设△ABC的三边长分别为a、b、c,且a+b+c=3,求f(a,b,c)=a~2+b~2+c~2+4/3abc的最小值.文[2]给出三种均值不等式解法,经研究,笔者再给出一种恒等变形解法,顺便得到f(a,b,c)的上确界.  相似文献   

16.
文[1]介绍了关于三角形边角关系的两个结论.实际上,在三角形中还有命题1设a,b,c为△ABC的三边长,当an,bn,cn(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且an,bn,cn(n∈N*)成等比数列.所以b2n=ancn,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.命题2设a,b,c为△ABC的三边长,当a1n,b1n,c1n(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且a1n,b1n,c1n成等比数列,所以(b1n)2=a1n·c1n.即b12=a1c,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.由命题1和命题2得定理设a,b,c为…  相似文献   

17.
大家熟知的余弦定理是: △ABC中,AB=c,BC=a,CA=b则有a~2=b~2+c~2-2bccosA (1) 又由正弦定理:a=2RsinA,b=2RsinB,C=2RsinC(2R为△ABC外接圆直径)代入(1)得:  相似文献   

18.
设△ABC的三内角A,B,C所对的边分别为a,b,c,外接圆半径为R,则有正弦定理(a/sin A)=(b/sin B)=(c/sin C)=2R.余弦定理a~2=b~2+c~2-2bccos A,b~2\c~2+a~2-2cacos B,c~2=a~2+b~2-2abcos C.在学完正余弦定理后,老师给我们提出了这样的间题:由于正弦定理可变形为α=2Rsin A,b=2Rsin B,c=2RsinC三种形式,而余弦定理也有三种形式,因此,对于余弦定理是否也有类似于正  相似文献   

19.
余弦定理:△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,则a2=b2+c2+2bccosA,b2=a2+c2-2accosB.c2=a2+b2-2abcosC.该定理可以变形为:b2+c2-a2=2bccosA ①a2+c2-b2=2accosB ②a2+b2-c2=2abcosC ③该组变式在  相似文献   

20.
文 [1 ]给出∑ 1a2 的上界估计 ,即设a、b、c为△ABC的三边长 ,R、r分别表示△ABC的外接圆、内切圆半径 ,则有∑ 1a2 ≤(R2 +r2 ) 2 +Rr(2R - 3r) 2R2 r3 (1 6R - 5r) .①文 [2 ]将①式加强为∑ 1a2 ≤ 14r2 .②本文给出∑ 1a2 的下界估计∑ 1a2 ≥ 12Rr.③证明 :∑ 1a2 =b2 c2 +a2 c2 +a2 b2a2 b2 c2≥(bc) (ac) +(ac) (ab) +(bc) (ab)a2 b2 c2=c+a +babc .由三角形中的恒等式a +b +c =2p(其中p为半周长 ) ,abc =4Rrp代入上式即得③ .有趣的是由②和③可得2r≤ 12r∑ 1a2≤R .这里又出现了欧拉不等式的一个隔离 .sum((1/(a~2))的下界…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号