首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes and illustrates key features of Bayesian approaches to model diagnostics and assessing data–model fit of structural equation models, discussing their merits relative to traditional procedures.  相似文献   

2.
    
This article examines Bayesian model averaging as a means of addressing predictive performance in Bayesian structural equation models. The current approach to addressing the problem of model uncertainty lies in the method of Bayesian model averaging. We expand the work of Madigan and his colleagues by considering a structural equation model as a special case of a directed acyclic graph. We then provide an algorithm that searches the model space for submodels and obtains a weighted average of the submodels using posterior model probabilities as weights. Our simulation study provides a frequentist evaluation of our Bayesian model averaging approach and indicates that when the true model is known, Bayesian model averaging does not yield necessarily better predictive performance compared to nonaveraged models. However, our case study using data from an international large-scale assessment reveals that the model-averaged submodels provide better posterior predictive performance compared to the initially specified model.  相似文献   

3.
    
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides reasonably accurate Type I errors even in small samples and for large models, clearly outperforming the current standard, that is, the likelihood ratio (LR) test. When data shows excess kurtosis, MV-corrected SRMR p values are only accurate in small models (p = 10), or in medium-sized models (p = 30) if no skewness is present and sample sizes are at least 500. Overall, when data are not normal, the MV-corrected LR test seems to outperform the MV-corrected SRMR. We elaborate on these findings by showing that the asymptotic approximation to the mean of the SRMR sampling distribution is quite accurate, while the asymptotic approximation to the standard deviation is not.  相似文献   

4.
    
Multilevel Structural equation models are most often estimated from a frequentist framework via maximum likelihood. However, as shown in this article, frequentist results are not always accurate. Alternatively, one can apply a Bayesian approach using Markov chain Monte Carlo estimation methods. This simulation study compared estimation quality using Bayesian and frequentist approaches in the context of a multilevel latent covariate model. Continuous and dichotomous variables were examined because it is not yet known how different types of outcomes—most notably categorical—affect parameter recovery in this modeling context. Within the Bayesian estimation framework, the impact of diffuse, weakly informative, and informative prior distributions were compared. Findings indicated that Bayesian estimation may be used to overcome convergence problems and improve parameter estimate bias. Results highlight the differences in estimation quality between dichotomous and continuous variable models and the importance of prior distribution choice for cluster-level random effects.  相似文献   

5.
Drawing valid inferences from item response theory (IRT) models is contingent upon a good fit of the data to the model. Violations of model‐data fit have numerous consequences, limiting the usefulness and applicability of the model. This instructional module provides an overview of methods used for evaluating the fit of IRT models. Upon completing this module, the reader will have an understanding of traditional and Bayesian approaches for evaluating model‐data fit of IRT models, the relative advantages of each approach, and the software available to implement each method.  相似文献   

6.
    
To infer longitudinal relationships among latent factors, traditional analyses assume that the measurement model is invariant across measurement occasions. Alternative to placing cross-occasion equality constraints on parameters, approximate measurement invariance (MI) can be analyzed by specifying informative priors on parameter differences between occasions. This study evaluated the estimation of structural coefficients in multiple-indicator autoregressive cross-lagged models under various conditions of approximate MI using Bayesian structural equation modeling. Design factors included factor structures, conditions of non-invariance, sizes of structural coefficients, and sample sizes. Models were analyzed using two sets of small-variance priors on select model parameters. Results showed that autoregressive coefficient estimates were more accurate for the mixed pattern than the decreasing pattern of non-invariance. When a model included cross-loadings, an interaction was found between the cross-lagged estimates and the non-invariance conditions. Implications of findings and future research directions are discussed.  相似文献   

7.
    
Appropriate model specification is fundamental to unbiased parameter estimates and accurate model interpretations in structural equation modeling. Thus detecting potential model misspecification has drawn the attention of many researchers. This simulation study evaluates the efficacy of the Bayesian approach (the posterior predictive checking, or PPC procedure) under multilevel bifactor model misspecification (i.e., ignoring a specific factor at the within level). The impact of model misspecification on structural coefficients was also examined in terms of bias and power. Results showed that the PPC procedure performed better in detecting multilevel bifactor model misspecification, when the misspecification became more severe and sample size was larger. Structural coefficients were increasingly negatively biased at the within level, as model misspecification became more severe. Model misspecification at the within level affected the between-level structural coefficient estimates more when data dependency was lower and the number of clusters was smaller. Implications for researchers are discussed.  相似文献   

8.
    
Fit indexes are an important tool in the evaluation of model fit in structural equation modeling (SEM). Currently, the newest confidence interval (CI) for fit indexes proposed by Zhang and Savalei (2016) is based on the quantiles of a bootstrap sampling distribution at a single level of misspecification. This method, despite a great improvement over naive and model-based bootstrap methods, still suffers from unsatisfactory coverage. In this work, we propose a new method of constructing bootstrap CIs for various fit indexes. This method directly inverts a bootstrap test and produces a CI that involves levels of misspecification that would not be rejected in a bootstrap test. Similar in rationale to a parametric CI of root mean square error of approximation (RMSEA) based on a noncentral χ2 distribution and a profile-likelihood CI of model parameters, this approach is shown to have better performance than the approach of Zhang and Savalei (2016), with more accurate coverage and more efficient widths.  相似文献   

9.
    
Proper model specification is an issue for researchers, regardless of the estimation framework being utilized. Typically, indexes are used to compare the fit of one model to the fit of an alternate model. These indexes only provide an indication of relative fit and do not necessarily point toward proper model specification. There is a procedure in the Bayesian framework called posterior predictive checking that is designed theoretically to detect model misspecification for observed data. However, the performance of the posterior predictive check procedure has thus far not been directly examined under different conditions of mixture model misspecification. This article addresses this task and aims to provide additional insight into whether or not posterior predictive checks can detect model misspecification within the context of Bayesian growth mixture modeling. Results indicate that this procedure can only identify mixture model misspecification under very extreme cases of misspecification.  相似文献   

10.
The size of a model has been shown to critically affect the goodness of approximation of the model fit statistic T to the asymptotic chi-square distribution in finite samples. It is not clear, however, whether this “model size effect” is a function of the number of manifest variables, the number of free parameters, or both. It is demonstrated by means of 2 Monte Carlo computer simulation studies that neither the number of free parameters to be estimated nor the model degrees of freedom systematically affect the T statistic when the number of manifest variables is held constant. Increasing the number of manifest variables, however, is associated with a severe bias. These results imply that model fit drastically depends on the size of the covariance matrix and that future studies involving goodness-of-fit statistics should always consider the number of manifest variables, but can safely neglect the influence of particular model specifications.  相似文献   

11.
    
In many applications of multilevel modeling, group-level (L2) variables for assessing group-level effects are generated by aggregating variables from a lower level (L1). However, the observed group mean might not be a reliable measure of the unobserved true group mean. In this article, we propose a Bayesian approach for estimating a multilevel latent contextual model that corrects for measurement error and sampling error (i.e., sampling only a small number of L1 units from a L2 unit) when estimating group-level effects of aggregated L1 variables. Two simulation studies were conducted to compare the Bayesian approach with the maximum likelihood approach implemented in Mplus. The Bayesian approach showed fewer estimation problems (e.g., inadmissible solutions) and more accurate estimates of the group-level effect than the maximum likelihood approach under problematic conditions (i.e., small number of groups, predictor variable with a small intraclass correlation). An application from educational psychology is used to illustrate the different estimation approaches.  相似文献   

12.
This simulation study investigated the sensitivity of commonly used cutoff values for global-model-fit indexes, with regard to different degrees of violations of the assumption of uncorrelated errors in confirmatory factor analysis. It is shown that the global-model-fit indexes fell short in identifying weak to strong model misspecifications under both different degrees of correlated error terms, and various simulation conditions. On the basis of an example misspecification search, it is argued that global model testing must be supplemented by this procedure. Implications for the use of structural equation modeling are discussed.  相似文献   

13.
    
We introduce and evaluate a new class of approximations to common test statistics in structural equation modeling. Such test statistics asymptotically follow the distribution of a weighted sum of i.i.d. chi-square variates, where the weights are eigenvalues of a certain matrix. The proposed eigenvalue block averaging (EBA) method involves creating blocks of these eigenvalues and replacing them within each block with the block average. The Satorra–Bentler scaling procedure is a special case of this framework, using one single block. The proposed procedure applies also to difference testing among nested models. We investigate the EBA procedure both theoretically in the asymptotic case, and with simulation studies for the finite-sample case, under both maximum likelihood and diagonally weighted least squares estimation. Comparison is made with 3 established approximations: Satorra–Bentler, the scaled and shifted, and the scaled F tests.  相似文献   

14.
Minor cross-loadings on non-targeted factors are often found in psychological or other instruments. Forcing them to zero in confirmatory factor analyses (CFA) leads to biased estimates and distorted structures. Alternatively, exploratory structural equation modeling (ESEM) and Bayesian structural equation modeling (BSEM) have been proposed. In this research, we compared the performance of the traditional independent-clusters-confirmatory-factor-analysis (ICM-CFA), the nonstandard CFA, ESEM with the Geomin- or Target-rotations, and BSEMs with different cross-loading priors (correct; small- or large-variance priors with zero mean) using simulated data with cross-loadings. Four factors were considered: the number of factors, the size of factor correlations, the cross-loading mean, and the loading variance. Results indicated that ICM-CFA performed the worst. ESEMs were generally superior to CFAs but inferior to BSEM with correct priors that provided the precise estimation. BSEM with large- or small-variance priors performed similarly while the prior mean for cross-loadings was more important than the prior variance.  相似文献   

15.
Structural equation modeling (SEM) is a versatile statistical modeling tool. Its estimation techniques, modeling capacities, and breadth of applications are expanding rapidly. This module introduces some common terminologies. General steps of SEM are discussed along with important considerations in each step. Simple examples are provided to illustrate some of the ideas for beginners. In addition, several popular specialized SEM software programs are briefly discussed with regard to their features and availability. The intent of this module is to focus on foundational issues to inform readers of the potentials as well as the limitations of SEM. Interested readers are encouraged to consult additional references for advanced model types and more application examples.  相似文献   

16.
    
In this study, we contrast two competing approaches, not previously compared, that balance the rigor of CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs) replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-loadings (CL), residual covariances (RC), or CLs and RCs (CLRC). In Study 1, using three simulation studies, results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; and (4) different specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model estimation. The real data analysis (Study 2) showed that the differences in estimation between different models were largely consistent with those in Study1 but somewhat smaller.  相似文献   

17.
    
Meta-analytic structural equation modeling (MASEM) refers to a set of meta-analysis techniques for combining and comparing structural equation modeling (SEM) results from multiple studies. Existing approaches to MASEM cannot appropriately model between-studies heterogeneity in structural parameters because of missing correlations, lack model fit assessment, and suffer from several theoretical limitations. In this study, we address the major shortcomings of existing approaches by proposing a novel Bayesian multilevel SEM approach. Simulation results showed that the proposed approach performed satisfactorily in terms of parameter estimation and model fit evaluation when the number of studies and the within-study sample size were sufficiently large and when correlations were missing completely at random. An empirical example about the structure of personality based on a subset of data was provided. Results favored the third factor structure over the hierarchical structure. We end the article with discussions and future directions.  相似文献   

18.
Posterior predictive model checking (PPMC) is a Bayesian model checking method that compares the observed data to (plausible) future observations from the posterior predictive distribution. We propose an alternative to PPMC in the context of structural equation modeling, which we term the poor person’s PPMC (PP-PPMC), for the situation wherein one cannot afford (or is unwilling) to draw samples from the full posterior. Using only by-products of likelihood-based estimation (maximum likelihood estimate and information matrix), the PP-PPMC offers a natural method to handle parameter uncertainty in model fit assessment. In particular, a coupling relationship between the classical p values from the model fit chi-square test and the predictive p values from the PP-PPMC method is carefully examined, suggesting that PP-PPMC might offer an alternative, principled approach for model fit assessment. We also illustrate the flexibility of the PP-PPMC approach by applying it to case-influence diagnostics.  相似文献   

19.
In structural equation modeling (SEM), researchers need to evaluate whether item response data, which are often multidimensional, can be modeled with a unidimensional measurement model without seriously biasing the parameter estimates. This issue is commonly addressed through testing the fit of a unidimensional model specification, a strategy previously determined to be problematic. As an alternative to the use of fit indexes, we considered the utility of a statistical tool that was expressly designed to assess the degree of departure from unidimensionality in a data set. Specifically, we evaluated the ability of the DETECT “essential unidimensionality” index to predict the bias in parameter estimates that results from misspecifying a unidimensional model when the data are multidimensional. We generated multidimensional data from bifactor structures that varied in general factor strength, number of group factors, and items per group factor; a unidimensional measurement model was then fit and parameter bias recorded. Although DETECT index values were generally predictive of parameter bias, in many cases, the degree of bias was small even though DETECT indicated significant multidimensionality. Thus we do not recommend the stand-alone use of DETECT benchmark values to either accept or reject a unidimensional measurement model. However, when DETECT was used in combination with additional indexes of general factor strength and group factor structure, parameter bias was highly predictable. Recommendations for judging the severity of potential model misspecifications in practice are provided.  相似文献   

20.
    
Bootstrapping approximate fit indexes in structural equation modeling (SEM) is of great importance because most fit indexes do not have tractable analytic distributions. Model-based bootstrap, which has been proposed to obtain the distribution of the model chi-square statistic under the null hypothesis (Bollen & Stine, 1992), is not theoretically appropriate for obtaining confidence intervals (CIs) for fit indexes because it assumes the null is exactly true. On the other hand, naive bootstrap is not expected to work well for those fit indexes that are based on the chi-square statistic, such as the root mean square error of approximation (RMSEA) and the comparative fit index (CFI), because sample noncentrality is a biased estimate of the population noncentrality. In this article we argue that a recently proposed bootstrap approach due to Yuan, Hayashi, and Yanagihara (YHY; 2007) is ideal for bootstrapping fit indexes that are based on the chi-square. This method transforms the data so that the “parent” population has the population noncentrality parameter equal to the estimated noncentrality in the original sample. We conducted a simulation study to evaluate the performance of the YHY bootstrap and the naive bootstrap for 4 indexes: RMSEA, CFI, goodness-of-fit index (GFI), and standardized root mean square residual (SRMR). We found that for RMSEA and CFI, the CIs under the YHY bootstrap had relatively good coverage rates for all conditions, whereas the CIs under the naive bootstrap had very low coverage rates when the fitted model had large degrees of freedom. However, for GFI and SRMR, the CIs under both bootstrap methods had poor coverage rates in most conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号