首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但有些题目必须进行必要的变形才能利用,下面是一些常用的变形技巧.1配凑1)凑系数例1当00,利  相似文献   

2.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

3.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

4.
题求y=2/sinx sinx/2(0相似文献   

5.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

6.
不等式求最值,是高中的一个重点,也是一个难点.本文推出一个简单的不等式,其结构由双曲线方程而得出,故简称双曲线形不等式.定理:已知a,b≠0,且有x2/a2-y2/b2=1,則有a2-b2≤(x-y)2,当且仅当b2 x=a2 y时取等号.证明:(a2-b2)·(x2/a2-y2/b2)=x2+y2-(b2 x2/a2+a2 y2/b2)≤x2+y2-2bx/a·ay/b=x2+y2-2xy=(x-y)2,  相似文献   

7.
基本不等式a+b/2≥√ab(a〉0,b〉0,当且仅当a=b时等号成立)在不等式的证明、求解或者解决其他问题中都起到了十分重要的工具性作用。在利用基本不等式求解函数最值问题时,有些题目可以直接利用公式求解,有些题目必须进行必要的变形才能利用均值不等式求解。下面介绍一些常用的变形技巧。  相似文献   

8.
均值不等式a+b2≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值及值域的问题。但是,有些题目必须进行必要的变形才能利用均不等式求解,现本文将讨论均值不等式的应用技巧,供广大师生参考。  相似文献   

9.
应用均值不等式求最值时,应使和或积为定值。这时往往需要采用“拆项、添项、变系数”等变形技巧构造定值.本文例析若干变形技巧.例1求函数y=x(1-2x)(0相似文献   

10.
洪扬婷 《考试周刊》2014,(88):52-52
<正>二维形式的柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.上述不等式可以变形为:|ac+bd|a2+b%2姨≤c2+d%2姨,不等式的左边可以看成点(c,d)到直线ax+by=0的距离,当不等式的右边为定值时,左边有最大值.利用柯西不等式及其变形可以巧妙地解决如下最值问题.例1:求椭圆C:x216+y212=1上的点到直线l:x-2y=0的距离  相似文献   

11.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

12.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

13.
用均值不等式求最值必须注意三点 :(1 )不等式中的变元为正 ;(2 )不等式中一边为定值 ;(3 )不等式中等号能成立 .在求最值时 ,常用变形技巧有 :一、巧拆项这里的拆项必须是均拆 .均拆整式 ,均拆分式 ,同时均拆整式或分式 .怎样拆因题而异 .例 1 已知 0 <x≤ π2 ,求函数y =sinx2 2sinx的最小值 .解 :∵ 0 <x≤ π2 ,∴ 0 <sinx≤ 1 (x=π2时取等号 )均拆分式凑积为定值 ,且等号能够成立 ,即y=sinx2 12sinx 12sinx 12sinx 12sinx≥ 55(12 ) 5(1sinx) 3 ≥ 52 .当且仅当sinx2 =12sinx,即…  相似文献   

14.
在利用均值不等式求最值时,多数同学是通过拆、添、配、凑来达到使用均值不等式的条件,当无法配凑出定值或等号不成立时,便不敢再用均值不等式,错失了良好的解题时机.其实有很多题目,若能恰当运用多次放缩,且使得多次放缩时可在同一条件下取得等号,仍可求出最值,下面举例说明.  相似文献   

15.
在人教教材中有一个不等式ex>1+x(x≠0),利用这个不等式及其变形可以证明不等式或恒成立问题,比直接用导数求解要简单,而且可以避免复杂的求导运算。原形:ex≥1+x当且仅当x=0时,等号成立;变形:ln(x+1)≤x(x>-1)当且仅当x=0时,等号成立;用导数证明很容易,过程略。例1(2013年新课标Ⅱ)已知函数f(x)=ex-ln(x+m)。  相似文献   

16.
均值不等式是指课本中的不等式:①若a、b∈R,则a2 b≥ab;②若a、b、c∈R ,则a 3b c≥3abc.那么,在运用它们求最值时,必须满足“一正、二定、三相等”这三个基本条件,但在具体的问题中,这些条件往往不全满足,这时,就必须对式子作一定的恒等变形,使它同时满足这三个条件,现将恒等变形的常见方法与技巧归纳如下:一、拆项法【例1】若x>0,求函数y=x2 2x 1x4的最小值.解:∵x>0且x2 2x 1x4=x2 1x6=x2 8x 8x,∴y=x2 8x 8x≥33x2·8x·8x=12.故当且仅当x2=8x,即x=2时,ymin=12.二、添项减项法【例2】已知a≥b>0,求y=a (2a4-b)b的最小值.解:∵a≥b>2b>…  相似文献   

17.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

18.
题 设实数 a,b满足 ab>0 ,证明 :3 a2 b2 (a b) 24≤ a2 10 ab b212 ,并求等号成立条件 .一般地 ,证明 :对任意实数 a,b均有3 a2 b2 (a b) 24≤ a2 ab b23,并求等号成立的条件 .这是《数学通讯》2 0 0 1年第 2 1期上刊登的第 14届爱尔兰数学奥林匹克第 1试第 5题 .参考解答在证这道题的后一部分时用了分类讨论法 (分 ab>0 ,ab≤ 0 ) ,这里用平均值代换法 ,可以一气呵成 .证明 设 x=a b2 ,y=a- b2 ,则 a=x y,b=x - y,不等式3 a2 b2 (a b) 24≤a2 ab b23等价于3 (x2 - y2 ) x2 ≤ 3x2 y23,等价于 2 7(x2 - y2 ) x2≤ (3x2 y2 ) 3 ,即 2…  相似文献   

19.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

20.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号