首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The aim of the study was to assess the relationship between performance-based and laboratory tests for muscular strength and power assessment in older women. Thirty-two women aged 68.8 ± 2.8 years were recruited. All participants were asessed for: (a) two performance-based tests – the box-stepping test (mean 296 ± 51 J) and two-revolution maximum test (mean 7.1 ± 2 kg) performed while pedalling on a cycle ergometer; and (b) muscular function tests – maximal instantaneous peak power jumping on a force platform (mean 1528 ± 279 W); maximal voluntary contraction (MVC) during knee extension (mean 601 ± 571 N) and leg press (mean 626 ± 126 N), and leg press power (mean 483 ± 98 W) on a dynamometer. Using univariate analysis, performance-based tests were compared with laboratory muscle strength and power measurements. Muscle power correlated most strongly with the performance-based tests for both jumping and leg press power (r-values between 0.67 and 0.75; P < 0.01). The correlation with muscle strength measures ranged between 0.48 and 0.61 (P < 0.01). The proposed tests may have particular relevance in geriatric and rehabilitation environments as they represent an easy, practical, and inexpensive alternative for the assessment of muscular strength and power.  相似文献   

2.
BackgroundBalance impairment is one of the strongest risk factors for falls. Proprioception, cutaneous sensitivity, and muscle strength are 3 important contributors to balance control in older adults. The relationship that dynamic and static balance control has to proprioception, cutaneous sensitivity, and muscle strength is still unclear. This study was performed to investigate the relationship these contributors have to dynamic and static balance control.MethodsA total of 164 older adults (female = 89, left dominant = 15, age: 73.5 ± 7.8 years, height: 161.6 ± 7.1 cm, weight: 63.7 ± 8.9 kg, mean ± SD) participated in this study. It tested the proprioception of their knee flexion/extension and ankle dorsi/plantarflexion, along with cutaneous sensitivity at the great toe, first and fifth metatarsals, arch, and heel, and the muscle strength of their ankle dorsi/plantarflexion and hip abduction. The Berg Balance Scale (BBS) and the root mean square (RMS) of the center of pressure (CoP) were collected as indications of dynamic and static balance control. A partial correlation was used to determine the relationship between the measured outcomes variables (BBS and CoP-RMS) and the proprioception, cutaneous sensitivity, and muscle strength variables.ResultsProprioception of ankle plantarflexion (r = –0.306, p = 0.002) and dorsiflexion (r = –0.217, p = 0.030), and muscle strength of ankle plantarflexion (r = 0.275, p = 0.004), dorsiflexion (r = 0.369, p < 0.001), and hip abduction (r = 0.342, p < 0.001) were weakly to moderately correlated with BBS. Proprioception of ankle dorsiflexion (r = 0.218, p = 0.020) and cutaneous sensitivity at the great toe (r = 0.231, p = 0.041) and arch (r = 0.285, p = 0.002) were weakly correlated with CoP-RMS in the anteroposterior direction. Proprioception of ankle dorsiflexion (r = 0.220, p = 0.035), knee flexion (r = 0.308, p = 0.001) and extension (r = 0.193, p = 0.040), and cutaneous sensitivity at the arch (r = 0.206, p = 0.028) were weakly to moderately correlated with CoP-RMS in the mediolateral direction.ConclusionThere is a weak-to-moderate relationship between proprioception and dynamic and static balance control, a weak relationship between cutaneous sensitivity and static balance control, and a weak-to-moderate relationship between muscle strength and dynamic balance control.  相似文献   

3.
Abstract To investigate the effects of ageing on the neural control strategies governing sprint cycling on a friction-loaded cycle-ergometer, 10 older (aged 70-83yr) and 8 young (aged 19-35yr) healthy women completed seven 6-s all-out cycling trials against varying loads. Root mean square (RMS), median frequency and muscle fibre conduction velocity were determined from the vastus lateralis of the dominant limb during each pedal stroke. Peak power was 43% lower in the older group compared to the younger (p??0.05). ΔRMS from the first to the sixth second during each trial was found to increase significantly with the development of power output in both groups (p?相似文献   

4.
This study aimed to determine which contractile properties measured by tensiomyography (TMG) could better differentiate athletes with high- and low-power values, as well as to analyse the relationship between contractile properties and power production capacity. The contractile properties of the vastus medialis (VM), rectus femoris (RF) and vastus lateralis (VL) of an Olympic women’s Rugby Sevens team (n?=?14) were analysed before a Wingate test in which their peak power output (PPO) was determined. Athletes were then divided into a high-power (HP) and a low-power (LP) group. HP presented an almost certainly higher PPO (9.8?±?0.3 vs. 8.9?±?0.4 W kg?1, ES?=?3.00) than LP, as well as a very likely lower radial displacement (3.39?±?1.16 vs. 5.65?±?1.50?mm, ES?=?1.68) and velocity of deformation (0.08?±?0.02 vs. 0.13?±?0.03 mm ms?1, ES?=?1.87) of the VL. A likely lower time of delay was observed in HP for all analysed muscles (ES?>?0.60). PPO was very largely related to the radial displacement (r?=??0.75, 90% CI?=??0.90 to ?0.44) and velocity of deformation (r?=??0.70, 90% CI?=??0.87 to ?0.34) of the VL. A large correlation was found between PPO and the time of delay of the VL (r?=??0.61, 90% CI?=??0.84 to ?0.22). No correlations were found for the contractile properties of RF or VM. These results highlight the importance of VL contractile properties (but not so much those of RF and VM) for maximal power production and suggest TMG as a practical technique for its evaluation.  相似文献   

5.
The purpose of this study was to examine knee extensor/flexor muscle strength and physical activity in healthy males and females approaching retirement. Peak torques of the knee extensor and knee flexor muscle groups were measured bilaterally in 95 individuals (mean age 59.4 years) using an isokinetic dynamometer. Isokinetic concentric contractions were performed at angular velocities of 1.05 and 3.14 rad x s(-1). Physical activity, including household, leisure, and sporting activities, was assessed. The results show that the average peak torques exhibited were lower than previously reported in studies using the same methodology with different populations of similar age and body size. Over one-third of the participants were sedentary, with just 13% being active enough to obtain health benefits. The poor muscle strength and low physical activity of this self selecting group of healthy working adults were surprising, and potentially a cause for concern. The combination of retirement being a potential watershed for a decrease in physical activity and the known age-related decline in physical performance indicates that some of these participants are at risk of losing their functional independence fairly early in the retirement stage. We recommend the introduction of effective health promotion interventions for individuals approaching retirement, encouraging them to become more physically active.  相似文献   

6.
Abstract

The purpose of this study was to examine knee extensor/flexor muscle strength and physical activity in healthy males and females approaching retirement. Peak torques of the knee extensor and knee flexor muscle groups were measured bilaterally in 95 individuals (mean age 59.4 years) using an isokinetic dynamometer. Isokinetic concentric contractions were performed at angular velocities of 1.05 and 3.14 rad · s?1. Physical activity, including household, leisure, and sporting activities, was assessed. The results show that the average peak torques exhibited were lower than previously reported in studies using the same methodology with different populations of similar age and body size. Over one-third of the participants were sedentary, with just 13% being active enough to obtain health benefits. The poor muscle strength and low physical activity of this self selecting group of healthy working adults were surprising, and potentially a cause for concern. The combination of retirement being a potential watershed for a decrease in physical activity and the known age-related decline in physical performance indicates that some of these participants are at risk of losing their functional independence fairly early in the retirement stage. We recommend the introduction of effective health promotion interventions for individuals approaching retirement, encouraging them to become more physically active.  相似文献   

7.
We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n=7) or training (n=10) group. A leg-press isometric test was used for assessment. ST (three sessions/ week, three sets of 10-12 repetition maximum, five different exercises) induced significant increases (p < .05) on peak RPD (48.4%) and on RFD) and EMG of vastus medialis at time intervals of 0-50, 0-100, 0-150, and 0-200 ms (41.1-69.2% and 43.8-64.3%, respectively). Therefore, ST resulted in favorable changes in neuromuscular responses in older women.  相似文献   

8.
9.
Abstract

Environmental and genetic factors influence muscle function, resulting in large variations in phenotype between individuals. Multiple genetic variants (polygenic in nature) are thought to influence exercise-related phenotypes, yet how the relevant polymorphisms combine to influence muscular strength in individuals and populations is unclear. In this analysis, 22 genetic polymorphisms were identified in the literature that have been associated with muscular strength and power phenotypes. Using typical genotype frequencies, the probability of any given individual possessing an “optimal” polygenic profile was calculated as 0.0003% for the world population. Future identification of additional polymorphisms associated with muscular strength phenotypes would most likely reduce that probability even further. To examine the genetic potential for muscular strength within a human population, a “total genotype score” was generated for each individual within a hypothetical population of one million. The population expressed high similarity in polygenic profile with no individual differing by more than seven genotypes from a typical profile. Therefore, skeletal muscle strength potential within humans appears to be limited by polygenic profile similarity. Future research should aim to replicate more genotype–phenotype associations for muscular strength, because only five common genetic polymorphisms identified to date have positive replicated findings.  相似文献   

10.
Environmental and genetic factors influence muscle function, resulting in large variations in phenotype between individuals. Multiple genetic variants (polygenic in nature) are thought to influence exercise-related phenotypes, yet how the relevant polymorphisms combine to influence muscular strength in individuals and populations is unclear. In this analysis, 22 genetic polymorphisms were identified in the literature that have been associated with muscular strength and power phenotypes. Using typical genotype frequencies, the probability of any given individual possessing an "optimal" polygenic profile was calculated as 0.0003% for the world population. Future identification of additional polymorphisms associated with muscular strength phenotypes would most likely reduce that probability even further. To examine the genetic potential for muscular strength within a human population, a "total genotype score" was generated for each individual within a hypothetical population of one million. The population expressed high similarity in polygenic profile with no individual differing by more than seven genotypes from a typical profile. Therefore, skeletal muscle strength potential within humans appears to be limited by polygenic profile similarity. Future research should aim to replicate more genotype-phenotype associations for muscular strength, because only five common genetic polymorphisms identified to date have positive replicated findings.  相似文献   

11.
There are few studies on the relationship between skeletal muscle mass and balance in the young ages. We investigated the relationship between appendicular skeletal muscle mass, isokinetic muscle strength of lower extremity, and balance among healthy young men using relative skeletal muscle index. Thirty men were grouped according to relative appendicular skeletal muscle mass index: higher skeletal muscle group (n = 15) and lower skeletal muscle group (n = 15). Static and dynamic balance abilities were measured using the following: a test where participants stood on one leg with eyes closed, a modified Clinical Test of Sensory Interaction on Balance (mCTSIB) with eyes open and eyes closed, a stability test, and limits of stability test. The muscle strength of lower extremities was measured with an isokinetic analyser in hip, knee, and ankle joints. Participants with higher appendicular skeletal muscle mass were significantly more stable in maintaining dynamic balance than those with lower appendicular skeletal muscle mass. Moreover, appendicular skeletal muscle mass index was positively correlated with dynamic balance ability. Participants with higher appendicular skeletal muscle mass had stronger strength in the lower extremity, and there were significant differences in the isokinetic torque ratios between groups. From these results, it can be inferred that higher appendicular skeletal muscle mass relates to muscle strength and the alteration in the peak torque ratio of the lower extremity, contributing to the maintenance of balance.  相似文献   

12.
Objective: The purpose of the present study was to analyze whether improvements in fast walking speed induced by resistance training (RT) are associated with changes in body composition, muscle quality, and muscular strength in older women. Methods: Twenty-three healthy older women (69.6?±?6.4 years, 64.95?±?12.9?kg, 1.55?±?0.07?m, 27.06?±?4.6?kg/m²) performed a RT program for 8 weeks consisting of 8 exercises for the whole body, 3 sets of 10–15 repetitions maximum, 3 times a week. Anthropometric, body composition (fat-free mass [FFM], skeletal muscle mass [SMM], legs lean soft tissue [LLST], fat mass), knee extension muscular strength (KE1RM), muscle quality index (MQI [KE1RM/LLST]), and 10-meter walking test (10-MWT) were performed before and after the intervention. Results: Significant (P?<?.05) changes were observed from pre- to post-training for FFM (+1.6%), MQI (+7.2%), SMM (+2.4%), LLST (+1.8%), KE1RM (+8.6%), fat mass (?1.4%), and time to perform 10-MWT (?3.7%). The percentage change in 10-MWT was significantly associated with percentage change in MQI (r?=??0.46, P?=?.04) and KE1RM (r?=??0.45, P?=?.04), however not associated percentage of changes in SMM (r?=?0.01, P?=?.97), LLST (r?=??0.22, P?=?.33), and body fat (r?=?0.10, P?=?.66). Conclusion: We conclude that the improvement in the 10-MWT after an 8-week RT program is associated with increases in lower limb muscular strength and muscle quality, but not with muscle mass or body fat changes in older women.  相似文献   

13.
Abstract

Despite its widespread use in performance assessment, the reliability of vertical jump in an ageing population has not been addressed properly. The aim of the present study was to assess intra- and inter-day reliability of countermovement jump in healthy middle-aged (55–65 years) and older (66–75 years) men and women. Eighty-two participants were recruited and asked to perform countermovement jumps on two different occasions interspersed by 4 weeks. The middle-aged groups exhibited excellent absolute reliability for flight height, jump height, peak force, peak power, peak force/body mass, and peak power/body mass, with coefficients of variation ranging from 2.9% to 7.2% in men and from 3.6% to 6.9% in women and moderate-to-high intraclass correlations (0.75 to 0.97 in men; 0.77 to 0.95 in women). The older groups displayed good coefficients of variation (4.2% to 10.8% in men and 3.4% to 9.5% in women), but the intraclass correlations were low-to-high (0.43 to 0.84 in men; 0.42 to 0.93 in women). Overall, intra-session reliability was higher than inter-session reliability. Peak power was by far the most consistent variable, whereas flight and jump height had the most marked variability. The minimum detectable change varied from 10.5% to 33%, depending on the variable examined, suggesting important implications for intervention studies.  相似文献   

14.
Despite its widespread use in performance assessment, the reliability of vertical jump in an ageing population has not been addressed properly. The aim of the present study was to assess intra- and inter-day reliability of countermovement jump in healthy middle-aged (55-65 years) and older (66-75 years) men and women. Eighty-two participants were recruited and asked to perform countermovement jumps on two different occasions interspersed by 4 weeks. The middle-aged groups exhibited excellent absolute reliability for flight height, jump height, peak force, peak power, peak force/body mass, and peak power/body mass, with coefficients of variation ranging from 2.9% to 7.2% in men and from 3.6% to 6.9% in women and moderate-to-high intraclass correlations (0.75 to 0.97 in men; 0.77 to 0.95 in women). The older groups displayed good coefficients of variation (4.2% to 10.8% in men and 3.4% to 9.5% in women), but the intraclass correlations were low-to-high (0.43 to 0.84 in men; 0.42 to 0.93 in women). Overall, intra-session reliability was higher than inter-session reliability. Peak power was by far the most consistent variable, whereas flight and jump height had the most marked variability. The minimum detectable change varied from 10.5% to 33%, depending on the variable examined, suggesting important implications for intervention studies.  相似文献   

15.
健身俱乐部部分中年女会员持续参加半年以上肌力训练后显示:肌力训练对减少中年女性腰围有显著作用,并能达到降体重减体脂的目的,对预防心血管系统疾病,增强体质也有重要作用。  相似文献   

16.
运用当今体能训练热点核心力量等方面的知识,针对我国体操运动员落地稳定性方面存在的问题,从体操项目特点探讨体操运动员核心力量训练重要性,并根据其他项目核心力量训练经验提出体操运动员核心力量训练的原则与方法,希望通过核心力量训练提高落地动作稳定性.  相似文献   

17.
体育强国是一个多维的综合体,内涵丰富,是在我国竞技体育发展强势的情况下提出的.我国社会体育概念的提出早于体育强国.二者的关系是:我国社会体育的发展是实现体育强国的坚实基础,体育强国目标推动社会体育的发展.  相似文献   

18.
This study examined the predictive ability of the medicine ball chest throw and vertical jump for muscular strength and power in adolescents. One hundred and ninety adolescents participated in this study. Participants performed trials of the medicine ball chest throw and vertical jump, with vertical jump peak power calculated via an estimation equation. One-repetition maximum and peak power for the chest press and leg press were assessed using pneumatic exercise machines. The medicine ball chest throw strongly correlated with chest press one-repetition maximum and peak power, while the vertical jump peak power strongly correlated with leg press one-repetition maximum and peak power. The predictive ability of medicine ball chest throw was better than vertical jump peak power for muscular strength and power when controlling for sex, age, height, weight, and maturation, and was not affected by involvement in sports. Results show good predictive ability of the medicine ball chest throw for muscular strength and power in adolescents, while predictable ability of vertical jump peak power is weakened when other factors are taken into account.  相似文献   

19.
强力适能瑜伽练习对健康中年女性血脂的影响   总被引:2,自引:0,他引:2  
目的:通过分析受试者进行4周和7周强力适能瑜伽练习前后血脂指标和体成分指标的变化,来探讨瑜伽练习对中年女性血脂和体成分的影响.方法:15位无规律运动的健康中年女性持续7周的强力适能瑜伽练习,于练习前、4周后和7周后测血脂和体成分,血脂包括甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C),体成分包括体脂肪量、体重、去脂体重(FFM)、体质指数(BMI).结果:瑜伽练习4周后各项指标均无显著性变化,瑜伽练习7周后TC、LDL-C、TG、TG/HDL-C与LDL-C/HDL-C有显著性下降的趋势(P<0.05),而HDL-C、体重、体脂肪量、FFM、BMI等仍无显著性变化.结论:无规律运动的健康中年女性经过7周强力适能瑜伽练习后血脂状况获得改善,而对身体成分则无明显变化.  相似文献   

20.
Abstract

The purpose of this study was to compare the effects of a specific vibration programme with those of combined aerobic and resistance exercise training on bone mineral density (BMD), body composition, and muscular strength in post-menopausal women, over a period of 6 months. Thirty-two healthy, inactive post-menopausal women aged 46–62 years were divided into exercise (n = 10), vibration (n = 13), and control (n = 9) groups. The exercise group participated in a supervised programme of strength training at 70% of one-repetition maximum (1-RM) 2 days a week, and aerobic exercise at 70–85% of maximum heart rate one day a week. The vibration group performed vibration training 3 days a week (9 sets×45–80 s per session, 35–40 Hz, peak-to-peak amplitude of vertical vibration = 1.5 mm) on a vibration platform (NemesTM LCB, Bosco System). The BMD of the lumbar spine (L2–L4) was assessed using dual-energy X-ray absorptiometry, and muscle strength with the 1-RM method at baseline and after 6 months of intervention. The BMD of L2–L4 increased in the exercise group (P < 0.05), remained steady in the vibration group, and decreased in the control group (P < 0.05). Muscular strength of leg-extension and leg-curl exercise improved by 28% and 25.5% (P < 0.01) in the exercise group and by 13% (P < 0.01) and 20.5% (P < 0.001) in the vibration group, respectively. The results indicate that conventional training contributed to the increase in BMD of L2–L4, while the vibration programme helped to maintain BMD in post-menopausal women. Both training programmes were efficient in improving muscle strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号