首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

2.
Li G  Luo Y  Chen Q  Liao L  Zhao J 《Biomicrofluidics》2012,6(1):14118-1411816
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

3.
A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.  相似文献   

4.
In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.  相似文献   

5.
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.  相似文献   

6.
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.  相似文献   

7.
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics of degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL∕s and mean flow rates of approximately 1-1.5 nL∕s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.  相似文献   

8.
Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMS surface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmotic mobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy (AFM) analysis of the surface reveals a “peak and ridge” structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMS surface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMS surface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surface electric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings.  相似文献   

9.
We herein report a study on the intelligent control of microfluidic systems using reinforcement learning. Integrated microvalves are utilized to realize a variety of microfluidic functional modules, such as switching of flow pass, micropumping, and micromixing. The application of artificial intelligence to control microvalves can potentially contribute to the expansion of the versatility of microfluidic systems. As a preliminary attempt toward this motivation, we investigated the application of a reinforcement learning algorithm to microperistaltic pumps. First, we assumed a Markov property for the operation of diaphragms in the microperistaltic pump. Thereafter, components of the Markov decision process were defined for adaptation to the micropump. To acquire the pumping sequence, which maximizes the flow rate, the reward was defined as the obtained flow rate in a state transition of the microvalves. The present system successfully empirically determines the optimal sequence, which considers the physical characteristics of the components of the system that the authors did not recognize. Therefore, it was proved that reinforcement learning could be applied to microperistaltic pumps and is promising for the operation of larger and more complex microsystems.  相似文献   

10.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

11.
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick''s law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.  相似文献   

12.
Three dimensional (3D) stepped electrodes dramatically improve the flow rate and frequency range of ac electro-osmotic pumps, compared to planar electrodes. However, the fabrication of 3D stepped electrodes for ac electro-osmosis (ACEO) pumps usually involves several processing steps. This paper demonstrates results from ACEO pumps produced by a faster and less expensive method to fabricate the 3D electrodes—extending the previous work to disposable devices. The method is based on shadowed evaporation of metal on an insulating substrate that can be injection molded. Flow velocities through the 3D ACEO pump are similar to those seen in the previous work.  相似文献   

13.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

14.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

15.
We report a 3D microfluidic device with 32 detection channels and 64 sheath flow channels and embedded microball lens array for high throughput multicolor fluorescence detection. A throughput of 358 400 cells/s has been accomplished. This device is realized by utilizing solid immersion micro ball lens arrays for high sensitivity and parallel fluorescence detection. High refractive index micro ball lenses (n = 2.1) are embedded underneath PDMS channels close to cell detection zones in channels. This design permits patterning high N.A. micro ball lenses in a compact fashion for parallel fluorescence detection on a small footprint device. This device also utilizes 3D microfluidic fabrication to address fluid routing issues in two-dimensional parallel sheath focusing and allows simultaneous pumping of 32 sample channels and 64 sheath flow channels with only two inlets.  相似文献   

16.
Precise patterning of metals is required for diverse microfluidic and microelectromechanical system (MEMS) applications ranging from the separation of proteins to the manipulation of single cells and drops of water-in-oil emulsions. Here we present a very simple, inexpensive method for fabricating micropatterned electrodes. We deposit a thin metal layer of controlled thickness using wet chemistry, thus eliminating the need for expensive equipment typically required for metal deposition. We demonstrate that the resulting deposited metal can be used to fabricate functional electrodes: The wet-deposited metal film can sustain patterning by photolithography down to micron-sized features required for MEMS and microfluidic applications, and its properties are suitable for operative electrodes used in a wide range of microfluidic applications for biological studies.  相似文献   

17.
Electro-osmotic flow (EOF) pumps are attractive for fluid manipulation in microfluidic channels. Open channel EOF pumps can produce high pressures and flow rates, and are relatively easy to fabricate on-chip or integrate with other microfluidic or electrical components. An EOF pump design that is conducive to on-chip fabrication consists of multiple small channel arms feeding into a larger flow channel. We have fabricated this type of pump design using a thin film deposition process that avoids wafer bonding. We have evaluated pumps fabricated on both silicon and glass substrates. Consistent flow rate versus electric field were obtained. For the range of 40–400 V, flow rates of 0.19–2.30 μL∕min were measured. Theoretical calculations of pump efficiency were made, as well as calculations of the mechanical power generated by various pump shapes, to investigate design parameters that should improve future pumps.  相似文献   

18.
Mass transport of a neutral solute for a power law fluid in a porous microtube under electro-osmotic flow regime is characterized in this study. Combined electro-osmotic and pressure driven flow is conducted herein. An analytical solution of concentration profile within mass transfer boundary layer is derived from the first principle. The solute transport through the porous wall is also coupled with the electro-osmotic flow to predict the solute concentration in the permeate stream. The effects of non-Newtonian rheology and the operating conditions on the permeation rate and permeate solute concentration are analyzed in detail. Both cases of assisting (electro-osmotic and poiseulle flow are in same direction) and opposing flow (the individual flows are in opposite direction) cases are taken care of. Enhancement of Sherwood due to electro-osmotic flow for a non-porous conduit is also quantified. Effects if non-Newtonian rheology on Sherwood number enhancement are observed.  相似文献   

19.
Lewpiriyawong N  Yang C 《Biomicrofluidics》2012,6(1):12807-128079
The recent development of microfluidic “lab on a chip” devices requires the need to continuously separate submicron particles. Here, we present a PDMS microfluidic device with sidewall conducting PDMS (AgPDMS) composite electrodes capable of separating submicron particles in hydrodynamic flow. In particular, the device can service dual functions. First, the AgPDMS composite electrodes embedded in a sidewall of the device channel allow for performing AC-dielectrophoretic (DEP) characterization through direct microscopic observation of particle behavior. Characterization experiments are carried out for numerous parameters including particle size, medium conductivity, and AC field frequency to reveal important dielectrophoresis DEP information in terms of the crossover frequency and positive/negative DEP behavior under specific frequencies. Second, the device offers an advantage that sidewall AgPDMS composite electrodes can produce strong DEP effects throughout the entire channel height, and thus the robustness of the on-chip particle separation is demonstrated for continuous separation in a flowing mixture of 0.5 and 5 μm particles with 100% separation efficiency.  相似文献   

20.
A versatile method to fabricate a multilayer polydimethylsiloxane (PDMS) device with micropillar arrays within the inner layer is reported. The method includes an inexpensive but repeatable approach for PDMS lamination at high compressive force to achieve high yield of pillar molding and transfer to a temporary carrier. The process also enables micropillar-containing thin films to be used as the inner layer of PDMS devices integrated with polymer membranes. A microfluidic cell culture device was demonstrated which included multiple vertically stacked flow channels and a pillar array serving as a cage for a collagen hydrogel. The functionality of the multilayer device was demonstrated by culturing collagen-embedded fibroblasts under interstitial flow through the three-dimensional scaffold. The fabrication methods described in this paper can find applications in a variety of devices, particularly for organ-on-chip applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号