共查询到20条相似文献,搜索用时 0 毫秒
2.
3.
最值问题是中学数学中永恒的话题,求多元函数的最值一直是高中数学竞赛中的热点问题.由于解决这类问题的方法灵活多变,具有较强的技巧性,也有一定的挑战性,因此也成了高中数学中的难点之一.本介绍求多元函数最值的常用方法和技巧,供参考. 相似文献
4.
二元函数f(x,y)是指含有两个变量x,y的函数,本文概述当变量x、y满足条件g(x,y)=0(或g(x,y)&;gt;0)时,函数f(x,y)最值问题求解的十种方法,并举例说明。 相似文献
5.
李祝全 《内江师范学院学报》2009,24(Z1)
求解函数最值的初等方法是高中数学的重要内容.求解函数最值的初等方法很多,比如配方法、判别式法、不等式法、单调性法、换元法、解几法等,利用这些方法可以简洁明快地解决一些函数的最值问题. 相似文献
6.
7.
8.
中学数学的最值知识是进一步学习高等数学中最值题的基础.因此,最值问题历来是各类考试的热点.求函数最值常有下面的几种方法: 相似文献
9.
在一些求函数的最值的问题中,运用构造向量法能使问题得到优化,而且可以发散学生的思维,培养学生的创新精神的作用。学会观察函数问题的结构特征,把握函数结构的向量模型,构造向量,把函数最值问题转化为向量问题,使问题解决达到事半功倍的效果。 相似文献
10.
11.
王凯 《数学大世界(高中辅导)》2010,(11):45-45
求函数最值在中学数学中占有重要地位,作为一名即将成为中学数学教师的我,有必要将函数最值的种种求法作一归纳和总结,以便自己今后能更好的胜任中学数学教学。 相似文献
12.
函数作为数学一个重要部分,具有重要的研究意义.而最值问题在函数研究过程中是必不可少的.一元函数的最值求解较为简单,而多元函数相对复杂.本文从多角度介绍多元函数最值问题的一些求解方法. 相似文献
13.
高中《代数》下册P9例3给出了两个很有用的最值定理.但“和”或“积”为定值,“=”不成立时,该定理就不适用了,为了解决这个问题,我们首先给出两个定理。 相似文献
14.
我们经常碰到一元函数y=f(x)的值域(最值)问题,但在学习过程中我们也常常会遇到二元函数.对于二元函数如何求它的值域(最值)?现介绍几种基本方法如下. 相似文献
15.
对于n个正数x1,x2,…,xn,如果它们的和是一个定值,则函数y=x1^m1+x2^m2…xn^mn(mi属于正有理数)在当x1: m1=x2:m2=…=xn:mn时有最大值; 相似文献
16.
徐晓云 《中国科教创新导刊》2013,(4):101-101
函数最值问题是数学领域的研究重点,其教学方案复杂多样。最值问题对于大多数学习学生难度较大,而且解法较为灵活,方法多,属于数学学习的难点,所以对于函数最值问题进行分类教学可以使教学的效率大大加大。本文从笔者的经验出发,结合数学知识对函数的最值问题进行研究,列举出几种最值的求解方法,并且运用典型例题加深读者的了解。希望全文能够给相关人员一些启发和思考,加深读者对函数曩值求解的理解。 相似文献
17.
求三角函数的最值(或值域)是高中数学的重要内容之一,更是高考的常考点,从1991年到2000年的10年中,先后有7年都考了最值问题。下面就举例来说明三角函数最值的几种常见而重要的求法. 相似文献
18.
函数是高中数学的核心内容,是历年高考命题的热点.函数的最大、最小值更是函数的重要性质,贯穿于整个高中数学的始终.《课标》背景下,函数的最值问题仍然是高考重点考查的内容之一.10年广东文理19题、09年广东理20题(文21题)、08年广东文17题、07年广东19题、10年山东文理14题、09年山东理21题(文22题)、08年山东文22 相似文献
19.
20.
<正> 解析几何的最值问题以直线与圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性.这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有相当高的能力要求. 相似文献