首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解含参数的一元二次方程的整数根问题,关键是要熟练掌握一元二次方程的基础知识,以及整数、完全平方数的性质,并能适当运用分类讨论等思想方法.现举例说明解决这类问题的常用思路与方法.一、判别式法若一元二次方程有整数根,则有Δ≥0,并且Δ恰为完全平方数.同时,方程的二次项系数不为零,由此可解决相关问题.例1当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的解都是整数?解依题意,有Δ1=(-4)2-4m×4≥0,Δ2=(-4m)2-4(4m2-4m-5)≥0.得16-16m≥0,-4m-5≤0.∴-45≤m≤1,而m为整数,∴m=-1,或0,或1.当m=-1时,方程mx2-4x+4=…  相似文献   

2.
一元二次方程是初中数学的重要内容之一 ,以一元二次方程知识为背景的问题是历年中考的热门试题 .这里与同学们交流一下如何恰当地构造一元二次方程 ,利用根与系数的关系或判别式解题 .一、解不等式问题例 1 已知一元二次方程 2x2 -2x + 3m-1 =0有两个实数根x1 、x2 ,且它们满足不等式 x1 x2x1 +x2 -4 <1 ,求实数m的取值范围 .解 由题意得 :x1 +x2 =1 ,x1 x2 =3m -12 ,代入上式得3m-121 -4 <1 ,∴m >-53.又由Δ≥ 0可得4-4 × 2 ( 3m -1 ) ≥ 0 ,∴m ≤ 12 .∴m的取值范围是 -53相似文献   

3.
一元二次方程根的判别式和根与系数的关系是初中数学的重点内容.解含有字母系数的一元二次方程时,常常会因对字母系数考虑不周,或对判别式运用不当而产生错误.例1求证:关于方程mx2-(m+2)x+1=0有实数根.错解:当m≠0时,Δ=[-(m+2)]2-4m=m2+4,∵m2≥0,∴m2+4>0.即原方程有两个不相等的实数根.分析:含有字母系数的方程不一定是一元二次方程,所以二次项系数也可能等于0,即应对二次项系数进行分类讨论.应补充:当m=0时,原方程变为-2x+1=0,此方程只有一个实数根x=12.例2关于x的方程mx2-(2m+1)x+m=0,有两个不相等的实数根,求m的取值范围.错解:根据题…  相似文献   

4.
李恩义 《甘肃教育》2014,(12):92-92
正在学习一元二次方程、二次函数以及二次不等式时,一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2-4ac,无时不在,无处不有.正确理解"△"的真实含义,熟练掌握其用法,不仅对解决相关问题有所帮助,而且对学生进一步弄清这几部分知识间的相互关系十分必要.一、应用求根公式时,不能忽视"△"例1解关于x的一元二次方程(m-1)x2+2mx+(m+3)=0这类问题最容易出错的是不讨论"△"的情况,就用公式法解.其正确的解法为:解:△=(2m)2-4(m-1)(m+3)  相似文献   

5.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

6.
一元二次方程一直是中考的重头戏.近年来,围绕着“重在基础,突出能力,尝试创新”的命题思路,一元二次方程新题型精彩纷呈.一、设计有隐含条件的一元二次方程问题例1已知x1、x2是关于x的方程(m-1)2x2-(2m-5)x+1=0的两个实数根.(1)若P=1x1+1x2,求P的取值范围;(2)问x1、x2能否同时为正数?若能同时为正数,求出相应的取值范围;若不能同时为正数,请说明理由.简解:(1)依题意可得(m-1)2≠0,且△≥0.这样可以解得m≤74,且m≠1.又x1+x2=2m-5(m-1)2,x1x2=1(m-1)2,故P=1x1+1x2=x1+x2x1x2=2m-5.∴m=P+52,从而有P≤-32,且P≠-3.(2)由m≤74,且m≠1知x1+x…  相似文献   

7.
在中考复习中,注意某些公式、法则的适用范围以及它们的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题,希望能引起同学们的重视.一、忽视应用根的判别式例1已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个实数根α、β满足α1+β1=1,求m的值.(2004年重庆市中考数学试题)错解:∵1α+β1=1,∴αα+ββ=1,即α+β=αβ.又∵α+β=-(2m-3),αβ=m2,∴3-2m=m2.解之,得m1=-3,m2=1.∴m的值是-3或1.分析:应用一元二次方程的根与系数的关系时,首先要判别方程有无实数根,只有符合Δ≥0的条件,方能确保公式的应用.∵α,β…  相似文献   

8.
20 0 3年江苏省盐城市中考数学试卷中有这样一道试题 :已知关于x的方程x2 + 2 ( 2 -m)x + 3- 6m =0 .( 1 )求证 :无论m取什么实数 ,方程总有实数根 ;( 2 )如果方程的两个实数根x1、x2 满足x1=3x2 ,求实数m .这是一道考查学生一元二次方程根的判别式、配方法、非负数性质、一元二次方程的根与系数关系以及方程思想、分类讨论思想水平的好题 .其解法灵活多样 ,有助于学生数学能力的提高 .( 1 )证法一 :由Δ =4 ( 2 -m) 2 - 4( 3- 6m)=1 6 - 1 6m + 4m2 - 1 2 + 2 4m=4m2 + 8m + 4=4 (m + 1 ) 2≥ 0 ,可知无论m取何实数 ,方程必有实数根 .说明 …  相似文献   

9.
一元二次方程的根的判别式和韦达定理(根与系数关系)在解题中有广泛的应用,近年来中考中屡屡以压轴题形式出现,现举例说明·例1(四川省)已知关于x的方程x2-2(m+1)x+m2-2m-3=0,①的两个不相等实数根中有一个根为0,是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0,②的两个实数根x1、x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由·解:因为方程①有两个不等实根,所以Δ=|-2(m+1)|2-4(m2-2m-3)=16m+16>0,所以m>-1·又因为方程①有一根为0,所以m2-2m-3=0,即(m-3)(m+1)=0·解得m1=-1,m2=3·又因为m>-1,所以m1=-1应舍去,所以m=3·当…  相似文献   

10.
在中考复习中,注意某些公式、法则的适用范围以及它的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题.希望能引起同学们的重视,避免摔倒在别人多次绊倒的地方.一、忽视根的判别式例1设x1,x2是方程2x2-4mx+2m2+3m-2=0的两个根.当m为何值时,x12+x22有最小值?求出这个最小值.错解:已知方程的两根是x1,x2,∴x1+x2=2m,x1·x2=2m2+3m-22 .∴x12+x22=(x1+x2)2-2x1x2=(2m)2-2×2m2+3m-22=2m2-3m+2=2(m-34)2+78.(1)∴当m=34时,x12+x22有最小值78.分析:∵x1,x2是原方程的两实根,∴Δ=(-4m)2-4×2(2m2+3m-2)≥0.解得:m≤23.…  相似文献   

11.
<正>韦达定理及其逆定理是反映一元二次方程根与系数关系的重要定理,它在求代数式的值,解方程(组)等方面都有着很广泛的应用.下面举例说明,供大家参考.一、求字母的值例1 已知关于x的一元二次方程x2-2(m-1)x+(m2-2(m-1)x+(m2-1)=0有两个不相等的实根α,β.若α2-1)=0有两个不相等的实根α,β.若α2+β2+β2=4,则m=___.解∵α,β是方程x2=4,则m=___.解∵α,β是方程x2-2(m-1)x+(m2-1)=0的两个不相等的实根,∴α+β=2(m-1),αβ=m2-2(m-1)x+(m2-1)=0的两个不相等的实根,∴α+β=2(m-1),αβ=m2-1,且Δ>0.  相似文献   

12.
一◆一、概念题1.一元二次方程(m-1)x2-3x-2=0 ,其中二次项为,二次项系数为,一次项为_______,一次项系数为,常数项为.(我们首先要做的事情是确定m-1≠0,即m≠1)2.关于x的方程mx2 - nx - mx + nx2 = p,(m+n≠0)可整理为,则二次项为,一次项为,常数项为.而二次项系数为,一次项系数为.3.AB=0圳A = 0或B = 0.请用语言表达其含义:.4.不解方程,判断下列方程实根的个数①x(x-1)+3=0,②x2 - 22姨x+2=0,③23x2- 6=2x.5.一元二次方程2x2 - 3x + 4 = 0,两个根分x1x2 = .◆二、基础题6.用4种不同的方法解方程(x - 2)2 - 4(x +7.…  相似文献   

13.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

14.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

15.
一、填空题1.关于x的方程(m-1)x2+(m+1)x+3m-1=0,当m时,是一元一次方程;当m时,是一元二次方程.2.当x=时,代数式x2-8x+12的值是-4.3.若连续两个奇数的积是15,则这两个数是.4.某厂2003年的钢产量是a吨,计划以后每一年比上一年的增长率为x,那么2005年的钢产量是吨.5.已知方程3x2-9x+m=0的一个根是1,则m的值是.6.写出一个方程,使它的一个根是1,另一个根满足-1相似文献   

16.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

17.
一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1相似文献   

18.
周奕生 《初中生》2003,(27):28-29
我叫判别式,外号,是一元二次方程庄园内的常客.我的外貌是=b2-4ac,身上的a、b、c是一元二次方程ax2+bx+c=0(a≠0)的三数,要想在一元二次方程中找到我,首先必须把方程化为一般形式.例如,在一元二次方程12x2+3x=1中,你如果想知道我是多少,必须先把方程化为一般形式12x2+3x-1=0,然后把a=12,b=3,c=-1代入b2-4ac计算便可知=b2-4ac=11.此时若把方程化为x2+6x-2=0,我又摇身一变,变成了=b2-4ac=44.有人对此疑惑不解,怎么一个方程会有两个不同的判别式呢?其实大家不必大惊小怪,我是个虚怀若谷、不计小节的人.你说我是11,还是说我是44,我都会默默地接…  相似文献   

19.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

20.
实系数一元二次方程 ax2 + bx+ c=0 ( a≠ 0 )的判别式 Δ=b2 - 4ac是中学数学中的基本内容 ,它在代数和几何中都有着广泛的应用 .下面让我们举些实例 ,说明判别式在解一类平面几何题中的应用 ,以供同行交流参考 .1 判别三角形形状例 1 设△ABC的三边为 a,b,c,并满足 b+ c=4 ,bc=a2 - 6 a+ 1 3,试问△ ABC是什么三角形 ?并证明你的结论 .解 由题意得 b,c是一元二次方程 x2 -4x+ ( a2 - 6 a+ 1 3) =0的两个实数根 ,∴Δ =4 2 - 4( a2 - 6 a+ 1 3)=- 4( a- 3) 2 ≥ 0 .∴ a=3,代入方程得 x2 - 4x+ 4 =0 .∴△ ABC为等腰三角形 .例 2 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号