首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、“角平分线 +翻折”构造全等三角形以三角形的角平分线为轴翻折 ,得全等三角形。在图 1中 ,以 AD为轴将△ ACD翻折 180°,使 C落在 C′(即在 A B上截取 AC′=AC) ,得△ ACD≌△ AC′D。在图 2中 ,以 AD为轴将△ A BD翻折 180°,使 B点落在 B′(即在 AC延长线截取 AB′=AB) ,连结 DB′,得△ ABD≌△ AB′D。例 1.已知△ ABC中 (如图 3) ,∠ C=90°,AC=BC,AD平分∠ BAC交 BC于 D。求证 :AB=AC+CD。分析 :由于题目中有角平分线条件 ,故可考虑翻折造全等 ,即把△ ACD以 AD为轴翻折 180°,使 C点落在 G 上 ,则有…  相似文献   

2.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

3.
在全等三角形的证明中,不仅需要让学生掌握全等三角形的判定定理,更重要的是根据所给的图形,如何运用这些定理。这其中有一个学生在认识图形过程中的心理发展问题。例1 如图1,∠1=∠2,∠3=∠4,求证:AC=AD。例2 如图2,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE。  相似文献   

4.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

5.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

6.
<正>1关于共边共角三角形定义:若两个三角形中有一公共边且有以该边的一端点为顶点的公共角,则称这个特殊图形为共边共角三角形.两个基本性质基本性质一:在如图1所示的共边共角三角形中,如果∠1=∠B(或△ADC∽△ACB),那么公共边AC是在两个三角形中的夹公共角的另两边(AD与AB)的比例中项,即AC2=AD·AB.  相似文献   

7.
全等三角形的性质定理与判定定理是平面几何知识的基础,有着广泛的应用.有些几何图形虽然不是明显的全等三角形,但是可根据图形条件或结论的特点,通过平移或旋转来构造全等三角形,进而利用全等三角形的性质证得结论.一、将一部分图形平移,构造全等三角形证题例1如图1,已知在△ABC中,A D是BC边上的中线,E是A D上一点,BE=AC,BE的延长线交A C于F,求证:A F=EF.分析本题可通过作△AD C关于点D的对称△GD B,从而把证AF=EF,即∠FAE=∠A EF转化为证明∠G=∠BEG.证明作BG∥AC交A D的延长线于G,则△AD C≌△GD B.因为AC=BG,…  相似文献   

8.
为扩大初中学生的知识面 ,以拓宽视野 ,提高综合思维能力 ,为适应高中学习奠定坚实的基础 ,本文现以 2 0 0 0年部分中考题为例 ,介绍一类“添加条件 ,证明两个三角形全等”的新题型。一、添加一个已知条件例 1.已知 :如图 1,AC =DC,∠ 1=∠ 2 ,请添加一个已知条件 :使△ ABC≌△ DEC。 (昆明市 )解 :添加∠ A=∠ D即可 ,这时由∠ 1=∠ 2可得∠ ACB=∠ DCE,再由 AC=DC,可证得△ ABC≌△ DEC(ASA)。注 :还可添∠ B =∠ DEC,或 BC =EC,通过AAS或 SAS证得△ ABC≌△ DEC。二、添加多个已知条件例 2 .如图 2 ,AB=AC,若使△…  相似文献   

9.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

10.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

11.
同学们在学习全等三角形时,经常会出现以下错误: 一、记两个三角形全等时,表示对应顶点的字母没有写在对应的位置上. 例1 如图1,当AB=DC,AC=BD时,得出△ABC≌△DBC;如图2,当AB=CD,BC=AD时,得出△ABC≌△ADC.  相似文献   

12.
一、填空题(每空2分,共18分)1.两个能够完全重合的图形称为____________,全等图形的__________和大小完全相同.2.如图1,若△OAD≌△OBC,且∠O=65°,∠C=20°则∠OAD=_____________.3.如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)____________.4.如图3,P是∠AOB的平分线上一点,PC⊥OA于C,PD⊥OB于D,则图中相等的线段有__________________.5.在Rt△ABC与Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=A′B′,则下列结论①AC=A′C′,②BC=B′C′,③AC=B′C′,④∠A=∠A′中,正确的是____…  相似文献   

13.
解答有关三角形的问题时,常常需要添加适当的辅助线.本文介绍三角形中5种常见辅助线的添加方法.一、延长中线构造全等三角形例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△AC D,得AC=A'B.这样将A  相似文献   

14.
例1 如图1,已知△ABC中,AD是BC边上的中线,且∠DAC>∠BAD。求证:AB>AC。分析∠DAC和∠BAD分散在两个不同的三角形中,不易看出它们之间的联系。若把中线AD加倍,即延长AD到E,使DE=AD,连结BE,则显然可证△BDE≌△CDA,于是∠E=∠DAC,  相似文献   

15.
一、填空题1 如图 1 ,已知AB =CD ,AC=BD (1 )图中全等的三角形有    对 ,它们分别是                 .(2 )求证 :OB =OC .分析  要证OB=OC ,只要证△    ≌△    ,要证△   ≌△    ,只需要再有条件∠     =∠     (或∠     =∠     ) .2 如图 2 ,△ABC中 ,AB =AC ,∠BAC=40°.CD是高线 ,则∠BCD =    °.3 如图 3 ,△ABC中 ,∠ACB=90°,∠A =3 0°,AB =8cm ,CD ⊥AB于点D .则BD =    cm ,AD =    cm ,CD =    cm .图 44 如图 4,AD是△ABC…  相似文献   

16.
<正>一、平移全等模型例1如图1,点A,B,D,E在同一条直线上,AB=DE,AC//DF,BC//EF.求证:△ABC≌△DEF.解析:根据已知条件,利用“ASA”即可证出△ABC≌△DEF.∵AC//DF,∴∠CAB=∠FDE.∵BC//EF,∴∠CBA=∠FED.∵∠CAB=∠FDE,AB=DE,∠CBA=∠FED,∴△ABC≌△DEF(ASA).反思:可将图1看作是△ABC沿AB方向平移AD的长度得到的全等三角形模型.常见的平移全等三角形模型的呈现形式有图1、图2两种.  相似文献   

17.
<正>同学们在七年级下学期学习全等三角形知识时接触过“手拉手”模型,如图1,△ABC和△ADE是共顶点三角形,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD,CE,则△BAD≌△CAE.在此基础上,到了八年级下学期,在学习了图形的相似后,上述“手拉手”模型就可运用于相似三角形中,如图2,如果将一个三角形放大或缩小后绕着一个顶点进行旋转,这个图形的旋转就是相似变换,得到的两个三角形就是旋转相似三角形,即△ABE∽△ACF.证明如下:  相似文献   

18.
问题:已知:如图1,AB=AC,DB=DC,F是AD的延长线上的一点,求证:BF=CF.揭示思路:本例要证BF=CF,要看BF与CF在哪两个三角形中,即将问题转化为证明全等三角形问题,结合图形可发现BF与CF在△ABF与△ACF或/△BDF与△CDF中,只要证△ABR≌△ACF或△BDF≌△CDF,  相似文献   

19.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

20.
折纸是一项集学习探索与娱乐为一体的活动.它不仅能折出许多几何形体,同时也能揭示许多数学原理.一、全等三角形在折纸中的运用例1如图1,把矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD交于点O,请找出除AB=CD,AD=BC外所有相等线段.解由于折叠过程中纸片被折部分长度及角度不发生改变,可得△ABD≌△EDB,AB=ED,AD=EB.又∠A=∠E,∠AOB=∠EOD(对顶角相等),AB=ED,∴△AOB≌△EOD.得AO=EO,BO=DO.二、折纸中的轴对称图形例2如图2,将一张正方形纸片两次对折,然后剪下含30°角的一块纸片.解欲知展开后图形,从图形轴对称性质分…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号