首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

T'ai Chi Chuan (TCC) is a widely practiced Chinese martial art said to physically develop balance and coordination as well as enhance emotional and mental health. TCC consists of a series of postures combined into a sequential movement providing a smooth, continuous, low-intensity activity. The purpose of this study was to examine the ventilatory and cardiovascular responses to the Long Form of Yang's style TCC. In addition, the subjects' TCC responses were compared to their ventilatory and cardiovascular responses during cycle ergometry at an oxygen consumption (VO2) equivalent to the mean TCC VO2 Six experienced (M = 8.3 yrs) male TCC practitioners served as subjects with data collected during the Cloud Hand movement of the TCC exercise. Significantly (p < .05) lower responses for ventilatory frequency (Vf) (11.3 and 15.7 breaths min?1), ventilatory equivalent (VE!VO2) (23.47 and 27.41), and the ratio of dead space ventilation to tidal volume (VD!VT) (20 and 27%) were found in TCC in comparison to cycle ergometry. The percentage of minute ventilation used for alveolar ventilation was significantly higher during TCC (p < .03) than cycle ergometry, with mean values of 81.1% and 73.1%, respectively. Cardiac output, stroke volume, and heart rate were not significantly different between TCC exercise and cycle ergometry at the same oxygen consumption. We concluded that, during TCC, expert practitioners show significantly different ventilatory responses leading to more efficient use of the ventilatory volume than would be expected from comparable levels of exertion on a cycle ergometer.  相似文献   

2.
The aim of this study was to assess the influence of three imposed crank rates on the attainment of peak oxygen consumption (VO2peak) and other physiological responses during incremental arm crank ergometry. Twenty physically active, although non-specifically trained, males volunteered for the study. They completed an exercise protocol using an electrically braked arm ergometer (Lode Angio, Groningen, Netherlands) at crank rates of 60, 70 and 80 rev x min(-1). The order of tests was randomized and they were separated by at least 2 days. Peak VO2 was significantly higher (P < 0.05) at 70 and 80 rev x min(-1) than at 60 rev x min(-1). Peak ventilation volume increased as a function of crank rate and was higher (P < 0.05) at 80 than at 60 rev x min(-1). Peak heart rate was higher (P < 0.05) at 70 and 80 rev x min(-1) than at 60 rev x min(-1). Furthermore, 70 and 80 rev x min(-1) resulted in an extended test time compared with 60 rev x min(-1). The greater physiological responses observed during the tests at the two faster crank rates might have been the result of a postponement of acute localized neuromuscular fatigue, allowing for more work to be completed. We recommend, therefore, that an imposed crank rate between 70 and 80 rev x min(-1) should be used to elicit VO2peak and other physiological responses in arm crank ergometry.  相似文献   

3.
The aim of the present study was to examine the relationship between the performance heart rate during an ultra-endurance triathlon and the heart rate corresponding to several demarcation points measured during laboratory-based progressive cycle ergometry and treadmill running. Less than one month before an ultra-endurance triathlon, 21 well-trained ultra-endurance triathletes (mean +/- s: age 35 +/- 6 years, height 1.77 +/- 0.05 m, mass 74.0 +/- 6.9 kg, = 4.75 +/- 0.42 l x min(-1)) performed progressive exercise tests of cycle ergometry and treadmill running for the determination of peak oxygen uptake (VO2peak), heart rate corresponding to the first and second ventilatory thresholds, as well as the heart rate deflection point. Portable telemetry units recorded heart rate at 60 s increments throughout the ultra-endurance triathlon. Heart rate during the cycle and run phases of the ultra-endurance triathlon (148 +/- 9 and 143 +/- 13 beats x min(-1) respectively) were significantly (P < 0.05) less than the second ventilatory thresholds (160 +/- 13 and 165 +/- 14 beats x min(-1) respectively) and heart rate deflection points (170 +/- 13 and 179 +/- 9 beats x min(-1) respectively). However, mean heart rate during the cycle and run phases of the ultra-endurance triathlon were significantly related to (r = 0.76 and 0.66; P < 0.01), and not significantly different from, the first ventilatory thresholds (146 +/- 12 and 148 +/- 15 beats x min(-1) respectively). Furthermore, the difference between heart rate during the cycle phase of the ultra-endurance triathlon and heart rate at the first ventilatory threshold was related to marathon run time (r = 0.61; P < 0.01) and overall ultra-endurance triathlon time (r = 0.45; P < 0.05). The results suggest that triathletes perform the cycle and run phases of the ultra-endurance triathlon at an exercise intensity near their first ventilatory threshold.  相似文献   

4.
The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.  相似文献   

5.
6.
The aim of this study was to establish a graded exercise test protocol for determining the peak physiological responses of female outrigger canoeists. Seventeen trained female outrigger canoeists completed two outrigger ergometer graded exercise test protocols in random order: (1) 25 W power output for 2 min increasing by 7.5 W every minute until exhaustion; and (2) 25 W power output for 2 min increasing by 15 W every 2 min to exhaustion. Heart rate and power output were recorded every 15 s. Expired air was collected continuously and sampled for analysis at 15-s intervals, while blood lactate concentration was measured immediately after and 3, 5, and 7 min after exercise. The peak physiological and performance variables examined included peak oxygen uptake (VO2peak), minute ventilation, tidal volume, ventilatory thresholds 1 and 2, respiratory rate, respiratory exchange ratio, heart rate, blood lactate concentration, power output, performance time, and time to VO2peak. There were no significant differences in peak physiological responses, ventilatory thresholds or performance variables between the two graded exercise test protocols. Despite no significant differences between protocols, due to the large limits of agreement evident between protocols for the peak physiological responses, it is recommended that the same protocol be used for all comparison testing to minimize intra-individual variability of results.  相似文献   

7.
8.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

9.
The physiology of deep-water running   总被引:2,自引:0,他引:2  
Deep-water running is performed in the deep end of a swimming pool, normally with the aid of a flotation vest. The method is used for purposes of preventing injury and promoting recovery from strenuous exercise and as a form of supplementary training for cardiovascular fitness. Both stroke volume and cardiac output increase during water immersion: an increase in blood volume largely offsets the cardiac decelerating reflex at rest. At submaximal exercise intensities, blood lactate responses to exercise during deep-water running are elevated in comparison to treadmill running at a given oxygen uptake (VO2). While VO2, minute ventilation and heart rate are decreased under maximal exercise conditions in the water, deep-water running nevertheless can be justified as providing an adequate stimulus for cardiovascular training. Responses to training programmes have confirmed the efficacy of deep-water running, although positive responses are most evident when measured in a water-based test. Aerobic performance is maintained with deep-water running for up to 6 weeks in trained endurance athletes; sedentary individuals benefit more than athletes in improving maximal oxygen uptake. There is some limited evidence of improvement in anaerobic measures and in upper body strength in individuals engaging in deep-water running. A reduction in spinal loading constitutes a role for deep-water running in the prevention of injury, while an alleviation of muscle soreness confirms its value in recovery training. Further research into the applications of deep-water running to exercise therapy and athletes' training is recommended.  相似文献   

10.
Abstract

Nowadays, Tai chi chuan (TCC) is practiced by millions worldwide with a range of skill levels. However, the effect of skill level on physiological response to TCC performance has yet to be clarified. In this study, physiological parameters during practicing simplified 24-form TCC were investigated and compared in 10 young high-level (HL) male TCC athletes and 10 ordinary-level (OL) male TCC practitioners with similar age and body size. Significantly higher energy expenditure, heart rate, oxygen uptake and tidal volume were found in HL group than OL group during TCC performance. The respiratory frequency and exhalation time were similar between the two groups during practicing TC; however, significantly less inhalation time was found in HL group (1.02±0.2 s) than OL group (1.12±0.28 s). Our results suggested that skill level may have considerable impact on metabolic and cardiorespiratory responses to TCC performance. TCC practitioners with different skill levels may practice TCC in different ways, which was supposed to lead to distinguishable response between the two groups.  相似文献   

11.
The aim of this study was to assess the influence of three imposed crank rates on the attainment of peak oxygen consumption ( V O 2peak ) and other physiological responses during incremental arm crank ergometry. Twenty physically active, although non-specifically trained, males volunteered for the study. They completed an exercise protocol using an electrically braked arm ergometer (Lode Angio, Groningen, Netherlands) at crank rates of 60, 70 and 80 rev·min -1 . The order of tests was randomized and they were separated by at least 2 days. Peak V O 2 was significantly higher ( P ? 0.05) at 70 and 80 rev·min -1 than at 60 rev·min -1 . Peak ventilation volume increased as a function of crank rate and was higher ( P ? 0.05) at 80 than at 60 rev·min -1 . Peak heart rate was higher ( P ? 0.05) at 70 and 80 rev·min -1 than at 60 rev·min -1 . Furthermore, 70 and 80 rev·min -1 resulted in an extended test time compared with 60 rev·min -1 . The greater physiological responses observed during the tests at the two faster crank rates might have been the result of a postponement of acute localized neuromuscular fatigue, allowing for more work to be completed. We recommend, therefore, that an imposed crank rate between 70 and 80 rev·min -1 should be used to elicit V O 2peak and other physiological responses in arm crank ergometry.  相似文献   

12.
The aim of this study was to compare the effects of nasal splinting during different modes of breathing on breathing patterns and cardiorespiratory responses. Ten healthy subjects (4 males, 6 females) performed five maximal treadmill tests while breathing through the nose, nose + dilator, mouth, nose + mouth, and nose + mouth + dilator. Repeated-measures analysis of variance and Tukey HSD revealed no significant differences between trials for maximal oxygen consumption, minute ventilation at an oxygen consumption of 30 ml.kg-1.min-1, carbon dioxide production, respiratory exchange ratio, tidal volume, dead space to tidal volume ratio, or completed treadmill stages to exhaustion. No significant difference was found in subjective dyspnoea ratings between stages of nose versus nose + dilator breathing. Minute ventilation, ventilatory equivalent for oxygen, and breath frequency for nose and nose + dilator versus mouth, nose + mouth, and nose + mouth + dilator were significantly lower. Ventilatory equivalent for carbon dioxide was significantly lower for nose versus mouth, and nose + dilator versus nose + mouth + dilator breathing. End-tidal carbon dioxide was significantly higher in nose versus mouth, nose + mouth, and nose + mouth + dilator breathing, and in nose + dilator versus mouth breathing. Nose breathing revealed a significantly lower heart rate versus nose + dilator, mouth, nose + mouth, and nose + mouth + dilator breathing. These results suggest that nasal splinting during exercise has minimal effects when nasal breathing and no effects when oronasal breathing.  相似文献   

13.
This study investigated gross efficiency changes in a group of 60 adult males (mean age 39.2 +/- 1.2 years) resulting from endurance training and age-related responses to such training in sub-groups (each n = 20) of younger (30.7 +/- 0.7 years), intermediate (38.3 +/- 0.5 years) and older (48.6 +/- 1.1 years) subjects. Gross efficiency (%) was calculated from work output, oxygen consumption and RER energy equivalents following 10 min standard cycle ergometry exercise at 100 W and 50 rev min-1. Measurements were made at pre-, mid- and post-8 months of training, which involved progressive walking/jogging activities designed to enhance endurance capacity. In the total group, VO2 decreased pre- to post-training from 2.15 +/- 0.02 to 1.93 +/- 0.01 1 min-1 (P less than 0.01). In the sub-groups, both the younger and older subjects showed a significantly reduced VO2, from 2.17 +/- 0.01 to 1.98 +/- 0.04 1 min-1 and 2.05 +/- 0.08 to 1.86 +/- 0.03 1 min-1 respectively (P less than 0.05), but no significant changes were noted at mid-training. In the intermediate age subjects, while there were trends towards a reduced VO2, none was significant. The ANOVA revealed increased mean gross efficiency in the total group from pre- (14.3 +/- 0.1%) to post- (15.5 +/- 0.2%) (P less than 0.05) but not at mid-training (14.8 +/- 0.2%). While similar trends were observed in the sub-groups, gross efficiency increases were not significant, although changes in gross efficiency were reflected in VO2. The findings suggest that during standardized exercise, oxygen cost may be reduced and gross efficiency increased in adult males following endurance training and that such changes may take place over a variety of age ranges.  相似文献   

14.
The aim of the present study was to determine maximal oxygen uptake (VO2max) directly during uphill walking exercise and to compare these values with those achieved during running and cycling exercise. Forty untrained students (20 males and 20 females) took part in three exercise tests. The running test was performed on a horizontal treadmill and the speed was gradually increased by 0.3 m . s(-1) every 3 min. The walking test was conducted on a treadmill inclined at 12% (speed of 1.8 m . s(-1)). The load was further increased every 3 min by the addition of a mass of one-twentieth of the body mass of the participant (plastic containers filled with water and added to a backpack carried by the participant). During the bicycle ergometry test, the workload was increased by 20 W every 2 min. All tests were performed until volitional exhaustion. During all tests, oxygen uptake, minute ventilation, tidal volume, respiratory frequency, heart rate, hydrogen ion concentration, base excess, and blood lactate concentration were analysed. The Pearson correlation coefficients between the weighted walking test and the commonly applied running and bicycle ergometry tests indicate a strong association with the new test in evaluating maximal oxygen uptake. The negligible differences in VO2max between the three tests for the male participants (running: 61.0 ml . kg(-1) . min(-1); walking: 60.4 ml . kg(-1) . min(-1); cycling: 60.2 ml . kg(-1) . min(-1)), and the fact that the females achieved better results on the walking test than the cycle ergometer test (running: 45.0 ml . kg(-1) . min(-1); walking: 42.6 ml . kg(-1) . min(-1); cycling: 40.1 ml . kg(-1) . min(-1)), confirm the suitability of the new method for evaluating aerobic power. The weighted walking test could be useful in the assessment of aerobic power in individuals for whom running is not advised or is difficult. In addition, the new test allows for determination of VO2max on small treadmills with a limited speed regulator, such as those found in specialist physiotherapy and fitness centres.  相似文献   

15.
Determinants of success during triathlon competition   总被引:1,自引:0,他引:1  
Eleven male triathletes were studied to determine the relationships between selected metabolic measurements and triathlon performance. Measurements of oxygen uptake (VO2), pulmonary ventilation (VE), and heart rate (HR) were made during submaximal and maximal 365.8 m freestyle swimming (FS), cycle ergometry (CE), and treadmill running (TR). Submaximal workloads were 1 m/s for swimming, 200 W for cycling, and 201.2 m/min for running. The mean VO2 max (l/min) was significantly (p less than .05) lower during FS (4.17) than CE (4.68) or TR (4.81). Swimming, cycling, and running performance times during the Muncie Endurathon (1.2 mile swim, 56 mile cycle, 13.1 mile run) were not significantly related to the event-specific VO2 max (ml/kg/min): -.49, -32 and -.55, respectively. The VO2 max expressed in l/min was found to be significantly (p less than .05) related to cycling time (r = -.70). A significant (p less than .05) relationship was observed between submaximal VO2 (ml/kg/min) during TM and run performance time (r = .64), whereas swimming and cycling performance times were significantly (p less than .05) related to submaximal VO2 max (l/min), r = .72 and .60, respectively. The percentage of VO2 (%VO2 max) used during the submaximal tests was significantly (p less than .05) related to swimming (.91), cycling (.78), and running (.86) performance times. Time spent running and cycling during triathlon competition was significantly (p less than .05) related to overall triathlon time, r = .97 and .81, respectively. However, swimming time was not significantly related (.30) to overall triathlon time. This study suggests that economy of effort is an important determinant of triathlon performance.  相似文献   

16.
目的:通过对体育学院大学生进行为期一周的间歇性低氧刺激,观察刺激前后递增负荷运动心率、通气量、摄氧量及定量负荷时血乳酸的变化,探讨间歇性低氧刺激对人体最大摄氧量及通气阈的影响。方法:本实验分两个阶段,每阶段做两次运动负荷。12名体育系男生在实验室常氧条件下在跑台上采用Bruce方法进行递增负荷运动至力竭。间隔3天后进行75%最大摄氧量的定量负荷运动,运动时间为9min,定量负荷后立即进行连续7天,每天1h的12%~10%O2的常压间歇性低氧刺激。低氧刺激完成后第二天再次进行上述两种运动方案。在极限递增负荷至力竭运动前后分别测定心率(HR)、递增负荷至力竭时间(t)、最大摄氧量(VO2max%)、血乳酸(Bla)及定量负荷时Bla等指标。结果:(1)低氧刺激后,递增负荷至力竭运动时HRmax增加(P0.01),VEmax上升(P0.01),呼吸商(R)增加(P0.05),t明显延长(P0.05),Bla明显增加(P0.05),定量负荷运动Bla显著降低(P0.05);(2)间歇性低氧刺激后通气阈时,HR、VE、VO2max%、HRmax%均显著性变化(P0.05),其中VE、VO2max%低氧刺激前后差异非常显著(P0.01)。结论:经过间歇性低氧刺激,受试者在进行递增负荷的力竭性运动时运动时间明显延长,心率在运动后增加,人体通气阈时相对应的心率百分数、最大摄氧量百分比、肺通气量均明显提高,这表明人体有氧耐力和极限负荷运动能力均得到增强。  相似文献   

17.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

18.
Abstract

The aim of the study was to compare physiological responses between runners adapted and not adapted to deep water running at maximal intensity and the intensity equivalent to the ventilatory threshold. Seventeen runners, either adapted (n = 10) or not adapted (n = 7) to deep water running, participated in the study. Participants in both groups undertook a maximal treadmill running and deep water running graded exercise test in which cardiorespiratory variables were measured. Interactions between adaptation (adapted vs. non-adapted) and condition (treadmill running vs. deep water running) were analysed. The main effects of adaptation and condition were also analysed in isolation. Runners adapted to deep water running experienced less of a reduction in maximum oxygen consumption ([Vdot]O2max) in deep water running compared with treadmill running than runners not adapted to deep water running. Maximal oxygen consumption, maximal heart rate, maximal ventilation, [Vdot]O2 at the ventilatory threshold, heart rate at the ventilatory threshold, and ventilation at the ventilatory threshold were significantly higher during treadmill than deep water running. Therefore, we conclude that adaptation to deep water running reduces the difference in [Vdot]O2max between the two modalities, possibly due to an increase in muscle recruitment. The results of this study support previous findings of a lower maximal and submaximal physiological response on deep water running for most of the measured parameters.  相似文献   

19.
This study was designed to examine the magnitude and duration of excess postexercise oxygen consumption (EPOC) following upper body exercise, using lower body exercise for comparison. On separate days and in a counterbalanced order, eight subjects (four male and four female) performed a 20-min exercise at 60% of mode-specific peak oxygen uptake (VO2) using an arm crank and cycle ergometer. Prior to each exercise, baseline VO2 and heart rate (HR) were measured during the final 15 min of a 45-min seated rest. VO2 and HR were measured continuously during the postexercise period until baseline VO2 was reestablished. No significant difference between the two experimental conditions was found for magnitude of EPOC (t [7] = 0.69, p greater than .05). Mean (+/- SD) values were 9.2 +/- 3.3 and 10.4 +/- 5.8 kcal for the arm crank and cycle ergometer exercises, respectively. Duration of EPOC was relatively short and not significantly different (t [7] = 0.24, p greater than .05) between the upper body (22.9 +/- 13.7 min) and lower body (24.2 +/- 19.4 min) exercises. Within the framework of the chosen exercise conditions, these results suggest EPOC may be related primarily to the relative metabolic rate of the active musculature, as opposed to the absolute exercise VO2 or quantity of active muscle mass associated with these two types of exercise.  相似文献   

20.
This study examined the effect of shoulder angle and gender on physiological and perceptual responses during incremental peak arm ergometry. Healthy adults (nine males, seven females) volunteered for the study and completed an incremental arm ergometry test on two separate occasions at two different shoulder angles (90 degrees and 45 degrees). Initial work rate was set at 16 W x min-1 and was increased progressively until exhaustion. Cardiorespiratory and perceptual responses were recorded at the end of each minute and compared using separate three-way (position x work rate x gender) repeated-measures analyses of variance. The systematic bias of peak responses was examined using separate two-way (position x gender) analyses of variance, while reproducibility of these parameters was explored using intraclass correlation coefficients, measurement bias/ratio, and 95% ratio limits of agreement. Despite a significantly greater peak heart rate for the 45 degrees position, cardiorespiratory and perceptual responses were similar at peak exercise for both positions. Peak values for all variables, although similar, demonstrated similar and large inter-test variability for men and women. Reduction of the shoulder joint angle to 45 degrees did not enhance peak work rate and peak oxygen consumption during seated upper body exercise. Due to the large inter-test variability, arm ergometry should be conducted using the same seated position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号