首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1.(湖北,理14)(x2+1x+2)5展开式中整理后的常数恒为.解法1:把三项看作两项展开2+x2+1x5,则Tr+1=Cr525-r2x2+1xr(0≤r≤5,r∈N).假如第r+1项恒为常数项,则Tr+1=Cr525-r2Ckrx2r-k1xk=Cr5Ckr2k-r25-r2xr-2k(0≤k≤r,k∈N),则r-2k=0r=2k(r,k∈N),∴r=0,k=0,r=2,k=1,r=4,k=2,常数恒为C05252+C25C12212+C45C242122-2=6322.解法2:x2+1x+25=x2+22x+22x5=[(x+2)2]5(2x)5=(x+2)10(2x)5.对于二项式(x+2)10中,Tr+1=Cr10·x10-r·(2)r要设列常数项需10-r=5,则r=5,则常数项为C510(2)525=6322.解法3:不妨设x>0,则x2+1x+25=x22+1x2+25=x2+1x25=x2+1x…  相似文献   

2.
二项式定理有关知识是每年高考必考内容之一,本文总结出了近年高考中的五大热点题型,供参考.一、通项运用型凡涉及到展开式的项及其系数(如常数项,x3项的系数等)问题,常是先写出其通项公式Tr 1=Crnan-rbr,然后再据题意进行求解,有时需建立方程才能得以解决.【例1】(2004年全国高考卷Ⅰ)(2x3-1x)7的展开式中常数项是()(A)14(B)-14(C)42(D)-42解:由Tr 1=C7r(2x3)7-r-1xr=(-1)r·27-r·C7r·x21-3r-2r.令21-3r-2r=0得r=6.故常数项为T7=(-1)6·21·C76=14,故选(A).【例2】(2004年浙江卷)若(x 32x)n展开式中存在常数项,则n的值可以是()(A)8…  相似文献   

3.
【例1】已知f(2 -cosx)=5 -sin2x,求f(x)·提示:设所求函数y=f(x)的参数表达式为x=2 -cost ,y=5 -sin2t·cost=2 -x,①sin2t=5 -y· ②①2+②,消去参数t ,得y=x2-4x+8,即f(x)=x2-4x+8x∈[1,3]·评注:设的恰当巧妙,解的合理漂亮·【例2】已知二次函数满足条件f(1 +x)=f(1 -x) ,且ymax=15,又f(x)=0的两根立方和等于17·求f(x)的解析式·解:设f(x)=a(x-1)2+15(a<0) ,即f(x)=ax2-2ax+a+15·∵x1+x2=2,x1x2=1 +1a5·∴x13+x23=(x1+x2)3-3(x1+x2)x1x2=2 -9a0,故2 -9a0=17,得a=-6·于是f(x)=-6x2+12x+9·评注:设置目标明确,过程自然流畅·【例3】设…  相似文献   

4.
高考中二项式定理试题几乎年年有 ,主要是利用二项展开式的通项公式求展开式的某一项的系数 ,求展开式的常数项 ;利用二项式系数的性质 ,求某多项式的系数和 ;证明组合数恒等式和整除问题 ,及近似值计算问题 .考查的题型主要是选择题和填空题 ,多是容易题和中等难度的试题 ,但有时综合解答题也涉及到二项式定理的应用 .一、求多项式系数和例 1  ( 1989年全国高考题 )已知 ( 1- 2 x) 7=a0 +a1x +a2 x +… +a7x7,那么 a1+a2 +… +a7=.简析 :欲求 a1+a2 +… +a7的值 ,则需先求出 a0 ,在已知等式中 ,令 x =0 ,则 a0 =1.再令 x =1,则 a0 +a1+a2 …  相似文献   

5.
一、展开式中的某一指定项例1(2004年河南、河北、山东、山西、安徽、江西高考题)(2x3-1x姨)7的展开式中常数项是()A.14B.-14C.42D.-42解析Tr+1=Cr7(2x3)7-r(-1x姨)r=(-1)rCr7·27-r·x21-7r2,由题意知21-7r2=0,得r=6,即展开式中常数项是第7项,T7=(-1)6C67·2=14,故选A.评析直接利用通项公式进行求解.二、求展开式中某一指定项的系数例2(2004年甘肃、新疆、宁夏、青海高考题)(x-1x姨)8展开式中x5的系数为_____.解析利用公式Tr+1=Crnan-rbr求得Tr+1=(-1)rCr8x8-3r2.令8-32r=5,得r=2,进而得到x5的系数为28,故填28.例3(2004年江苏高考题)…  相似文献   

6.
20 0 4年全国高考新课程安徽、河北卷(文科 )中第 19题是 :已知f(x) =ax3 3x2 -x 1在R上是减函数 ,求实数a的取值范围 不少同学在解这道高考题时 ,出现以下错误解法 :f′(x) =3ax2 6x-1.因为 f(x)在R上是减函数 ,所以 f′(x) <0 ,所以 3ax2 6x -1<0在x∈R上恒成立 ,即a <0且Δ =3 6 12a<0 ,因此a <-3 .错误的原因是 :将 f′(x) <0视为 f(x)在R上是减函数的充要条件 .其实当a =-3时 ,f(x) =-3x3 3x2 -x 1=-3 (x -13 ) 3 89,与函数f(x) =-x3(此函数在R上单减 )的单调性作比较 ,可知当a =-3时 ,f(x) =-3x3 3x2 -x 1=-3 (x -13 ) 3 89在R上…  相似文献   

7.
方熙龄 《宁夏教育》2007,(11):46-47
这是一节平常的数学课,学习内容是通过运用二项式定理求二项展开式中某些特定项的系数的学习,如何来求三项式(a 1a-2)8展开式中的常数项呢?教师引导学生展开讨论。生1:可以将(a 1a-2)8改写成("a-1a")16,则其展开式的通项为C16(r-1)ra8-r,所以常数项为C16(8-1)8=C168。(许多学生  相似文献   

8.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

9.
抛物线y=ax2 bx c(a≠0),当Δ=b2-4ac>0时,它与x轴必有不同的两个交点,此两点间的距离叫做抛物线截x轴所得弦长.关于抛物线截x轴所得弦长与判别式的关系,我们给出如下性质:定理1 当Δ=b2-4ac>0时,抛物线y=ax2 bx c与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=b2-4ac=(ad)2.证明 显然x1、x2是一元二次方程ax2 bx c=0的两根,所以x1 x2=-ba,x1x2=ca.Δ=b2-4ac=a2[(-ba)2-4.ca]=a2[(x1 x2)2-4x1x2]=a2(x1-x2)2=a2(|x1-x2|)2=(ad)2.定理2 当Δ=-4ak>0时,抛物线y=a(x-h)2 k与x轴交于A(x1,0)、B(x2,0)两点,记d=AB=|x1-x2|,则:Δ=-4…  相似文献   

10.
二项式定理(a+b)n=Cgan+C于an一‘b+C月。n一Zb,+…干C·a”一b·牛…+C,b“通项为C二a”一’b护用了、。、:丧示,即Tr二,二C二an一rb·(r=0,r,2,…,丸) 本文按照中学课本要求,举出有代丧性的例题,说明二项式定理在初等数学中的具体应用。 一、多项式乘方的展开 在(a“一l,)‘’的展开式中,a、b可以是实数,也可以是虑数,可以是单项式,也可以是多项式。这样,我们可以把二项式定理应用于多项式的乘方,将它展开。 例:求(1+二+x“)‘的展开式。 分析:将(1+x+xZ)‘写成〔(1+x)+二2〕‘。这里把1+戈肴成是a,x名看成是b,应叮 二项式定理展开。 …  相似文献   

11.
二项式定理是将(a+b)n 展开成多项式,其展开式的通项为Tk+1=Ckn an-kbk (k=0,1,…,n),其中Ckn称为二项式系数.利用二项式定理可以推导出C0n+C1n+…+Cnn=2n ,即证明了有n个元素的集合的子集个数为2n 个.因此,我们可以利用二项式定理计算有关组合数和(ax+b)n 展开式中xk ...  相似文献   

12.
我们知道,二项式定理(a+b)n展开式中的通项为Cnran-rbr(r=0,1,…,n),可这样得到,n个乘积括号中有r个取“b”,剩下的n-r个取“a”,得Crnbr·Cnn--rran-r,即Crnan-rbr.根据这一思路,能巧妙解决一类多项式展开题.例1解(a+2b+3c)7的展开式中a2b3c2项的系数是多少?此题可以根据二项式定理,先把其中的两项看成整体,用二项式定理展开再求题目所要求的.这种解法体现了化归的意识.但是,根据二项式定理的形成过程的探讨,可以直接得到下述解法:从7个括号的2个里取“a”,得C27a2,再从剩下的5个括号的3个里取“2b”,得C35(2b)3,最后在剩下的2个括号里…  相似文献   

13.
二项式定理等有关知识是每年高考必考的内容之一.本文下面对近十年高考题中与二项式定理有关的问题的类型和解法做些分类总结.一、求展开式中某一项的系数例1 在二项式(x-1)11的展开式中,系数最小的项的系数为(结果用数值表示).解:(x-1)11展开式共有12项,中间两项的系数的绝对值相等且最大.由于奇数项系数为正,偶数项系数为负,所以,第6项系数最小.T6=C511x6(-1)5=-462x6,系数为-462.例2 在x3+2x25的展开式中,x5的系数为.解:通项公式Tr+1=Cr5(x3)5-r2x2r=Cr5·2r·x15-5r.由题意,令15-5r=5,得r=2.故含x5项系数为…  相似文献   

14.
一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1相似文献   

15.
如果ax2+bx+c=0(a≠0)的两根x1、x2,那么x1+x2=-b/a,x1·x1=c/a这已为人们所熟知的韦达定理.其逆定理是:如果x1、x2满足x1+x2=-b/a,x1·x2=c/a,那么x1,x2一定是x1十x2=-b/a,x1·x2=c/a,那么x1,x2一定是方程ax2+bx+c=0(a≠0)的两根也成立.有趣的是以此导出一个重要的推论.  相似文献   

16.
二项式展开式中项(或系数)的问题,频繁出现在各类各级考试中,同学们对此问题不易把握,本文通过几个典型的问题介绍二项展开式中项的系数问题的类型及其处理方法.希望能对同学们的学习能起到抛砖引玉的作用.1求二项展开式中特定项的各系数之和例1已知(1-2x)7=a0 a1x a2x2 … a7x  相似文献   

17.
我们由二项式定理(a+b)n=C0nan+c1nan-1b+…+Crnan-rbr+…+Cnnbn,可以知道(a+b)n展开式中有n+1项.那么,(a+b+c)n展开式中有多少个不同的项呢? 先从简单的情况入手,记(a+b+c)n的展开式的项数为un.显然,n=1时,u1=3=(2·3)/2;n=2时,u2=6=(3·4)/2;  相似文献   

18.
2014安徽高考早已落下帷幕,其中的亮点很多,如文[1],这里不赘述.本文拟对高考试题提出几点看法,不妥之处,敬请指正. 1 理科第13题: 设a≠0,n是大于1的自然数,(1+x/a)n的展开式为a0+a1x+a2x2+…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图1所示,则a=____. 2010吉林预赛第9题:已知(ax+1)n =anxn +an-1xn-1+…+a1x+a0,点列Ai(i,ai)(i=0,1,2,…,n)部分图象如图1所示,则实数a的值为_______. 我们发现,这两题的图形完全一样,二项式(1+x/a)n中的1/a相当于二项式(ax+1)n中的a.它们不仅图形完全一样,条件几乎相同,要解决的问题也相同.作为选拔人才的高考题,直接把前几年的竞赛试题拿来考学生显然是不恰当的.  相似文献   

19.
一、选择题1.下列叙述中正确的是().A.正数的平方根不可能是负数B.无限小数都是无理数C.实数和数轴上的点一一对应D.带根号的数是无理数2.下列运算正确的是().A.2x5-3x3=-x2B.2!3 2!2=2!5C.(-x)5·(-x2)=-x10D.(3a6x3-9ax5)÷(-3ax3)=3x2-a53.因式分解(x-1)2-9的结果是().A.(x  相似文献   

20.
一、求解有关函数定义域的问题时出现错误例1已知函数f(x)=loga(-x2 log2ax)的定义域为(0,21),则实数a的取值范围是________.错解由函数f(x)=loga(-x2 log2ax)的定义域为(0,21)可知,当x!(0,21)时,-x2 log2ax>0恒成立,即关于x的不等式log2ax>x2在(0,21)上恒成立.令y1=log2ax,y2=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号