首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microfluidic device was successfully fabricated for the rapid serodiagnosis of amebiasis. A micro bead-based immunoassay was fabricated within integrated microfluidic chip to detect the antibody to Entamoeba histolytica in serum samples. In this assay, a recombinant fragment of C terminus of intermediate subunit of galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica (C-Igl, aa 603-1088) has been utilized instead of the crude antigen. This device was validated with serum samples from patients with amebiasis and showed great sensitivity. The serodiagnosis can be completed within 20 min with 2 μl sample consumption. The device can be applied for the rapid and cheap diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.Entamoeba histolytica is the causative agent of amebiasis and is globally considered a leading parasitic cause of human mortality.1 It has been estimated that 50 × 106 people develop invasive disease such as amebic dysentery and amebic liver abscess, resulting in 100 000 deaths per annum.2, 3 High sensitive diagnosis method for early stage amebiasis is quite critical to prevent and cure this disease. To date, various serological tests have been used for the immune diagnosis of amebiasis, such as the indirect fluorescent antibody test (IFA) and enzyme-linked immunosorbent assay (ELISA).We have recently identified a 150-kDa surface antigen of E. histolytica as an intermediate subunit (Igl) of galactose and N-acetyl-D-galactosamine-inhibitable lectin.4, 5 In particular, it has been shown that the C-terminus of Igl (C-Igl, aa 603-1088) was an especially useful antigen for the serodiagnosis of amebiasis. ELISA using C-Igl is more specific than the traditional ELISA using crude antigen.6 However, the ELISA process usually takes several hours, which is still labor-intensive and requires experienced operators to perform. More economic and convenient filed diagnosis methods are still in need, especially for the developing countries with limited medical facilities.Among all the bioanalytical techniques, microfluidics has been attracting more and more attention because of its low reagent/power consumption, the rapid analysis speed as well as easy automation.7, 8, 9, 10, 11 Especially with the development of the fabrication technique, microfluidics chip can include valves, mixers, pumps, heating devices, and even micro sensors, so many traditional bioanalytical methods can be performed in the microfluidics. Qualitative and quantitative immune analysis on the microfluidic chip was successfully proved by plenty of research with improved sensitivity, shorten reaction time, and less sample consumption.8, 10, 11, 12, 13, 14, 15, 16, 17 Moreover, with the intervention of other physical, chemical, biology, and electronic technology, microfluidic technique has been successfully utilized in protein crystallization, protein and gene analysis, cell capture and culturing and analysis as well as in the rapid and quantitative detection of microbes.13, 14, 15, 16, 17, 18, 19, 20Herein, we report a new integrated microfluidic device, which is capable of rapid serodiagnosis of amebiasis with little sample consumption. The microfluidic device was fabricated from polydimethysiloxane (PDMS) following standard soft lithography.21, 22 The device was composed of two layers (shown in Figure Figure1)1) including upper fluidic layer (in green and blue) and bottom control layer (in red).Open in a separate windowFigure 1Structure illustration of microfluidic chip.To create the fluidic layer and the control layer, two different molds with different patterns have fabricated by photolithographic processes. The mold to create the fluidic channels was made by positive photoresist (AZ-50 XT), while the control pneumatic mold was made by negative photoresist (SU8 2025). For the chip fabrication, the fluidic layer is made from PDMS (RTV 615 A: B in ratio 5:1), and the pattern was transferred from the respective mold. The control layer is made from PDMS (RTV 615 A:B in ratio 20:1). The two layers were assembled and bonded together accurately, and there is elastic PDMS membrane about 30 μm thick between the fluidic layer channels and control layer.21, 22 The elastic membrane at the intersection can deform to block the fluid inside the fluidic channels, functioning as valves under the pressures introduced though control channels. There are two types of channels in fluidic layer, the rectangular profiled (in green, 200 μm wide, 35 μm thick) channel and round profiled channels (in blue, 200 μm wide, 25 μm center height). Because of the position of the valves on the fluidic channels, two types of valves (Figure (Figure2a)2a) were built, working as a standard valve and a sieve valve. The standard valves (on blue fluidic channels) can totally block the fluid because of the round profile of fluidic channel; the sieve valve can only half close because of the rectangular profile. The sieve valve can be used to trap the microspheres (beads) filled inside the green fluidic channels, while letting the fluid pass through. By this sieve valve, a micro column (in green) is constructed, where the entire ELISA reaction happens. The micrograph of the fabricated micro device is shown in Figure Figure2b.2b. The channels were filled with food dyes in different colors to show the relative positions of the channels. The pressures though different control channels are individually controlled by solenoid valves, connected to a computer through relay board. By programming the status (on/off) of various valves at different time periods, all the microfluidic chip operation can be digitally controlled by the computer in manual, semi-automatic, or automatic manner.Open in a separate windowFigure 2(a) Structure illustration of micro column, standard valve and sieve valve; (b) photograph of the microfluidic chip.To validate this device, 12 patient serum samples were collected. Sera from 9 patients (Nos. 1–9) with an amebic liver abscess or amebic colitis were used as symptomatic cases. The diagnosis of these patients was based on their clinical symptoms, ultrasound examination (liver abscess) and endoscopic or microscopic examination (colitis). We also identified the clinical samples using PCR amplification of rRNA genes.24 As negative control, sera obtained from 3 healthy individuals with no known history of amebiasis were mixed into pool sera. The serum was positive for E. histolytica with a titer of 1:64 (borderline positive), as determined by an indirect fluorescent-antibody (IFA) test.23, 24 In our previously study, the sensitivity and specificity of the recombinant C-Igl in the ELISA were 97% and 99%.6, 25 In the current study, the serodiagnosis of amebiasis was also examined by ELISA using C-Igl.26 The cut-off for a positive result was defined as an ELISA value > 3 SD above the mean for healthy negative controls27 (shown in Figure Figure3).3). The seropositivity to C-Igl was 100% in patients with amebiasis.Open in a separate windowFigure 3ELISA reactivity of sera from patients against C-Igl. ELISA plate was coated with 100 ng per well of C-Igl. Serum samples from patients and healthy controls were used at 1:400 dilutions. The dashed line indicates the cut-off value. Data are representative of results from three independent experiments.In the diagnosis process with microfluidic chip, the 4 micro immuno-columns filled with C-Igl-coated microspheres were the key components of the device. The C-Igl was prepared in E. coli as inclusion bodies. After expression, the recombinant protein was purified and analyzed by SDS-PAGE. The apparent molecular mass was 85 kDa.26The immune-reaction mechanism is illustrated in Figure Figure4.4. The anti-His monocolonal antibody was immobilized onto the microspheres (beads, 9 μm diameter) coated with protein A. The C-Igl was then immobilized onto the beads through the binding between the His tag and C-Igl. For the diagnosis, the microspheres immobilized with C-Igl and blocked by 5% BSA were preloaded into the columns for the rapid analysis of the patient serum samples. Generally, serum samples which were diluted 100 times were first loaded into the reaction column and incubated at room temperature for 5 min. After being washed by PBS buffer, FITC-conjugated goat anti-human polyclonal antibody was added into the column for 4 min incubation. The fluorescence image can be collected by the fluorescence microscope after the micro column was washed with PBS buffer. From loading diluted serum samples into column to collecting fluorescence images, the total time to complete the immunoassay is less than 10 min. The final fluorescence results were analyzed by Image Pro Plus 6.0.Open in a separate windowFigure 4Schematic representation of the ELISA in the chip.Different reaction conditions have been investigated to find the optimized ones. For each patient, 2 μl sample is enough for the analysis. The designed microfluidic chip with 4 micro columns is capable for 4 parallel analyses at the same time. More micro columns can be integrated into the device if more parallel tests are needed.Different incubating time for the diagnosis has also been investigated and no significant difference has been found for various time periods. It is enough to incubate the chip for only 5 min. The total diagnosis time for one sample is less than 10 min. The detection result appeared as the fluorescence intensity of the reaction column. As shown in Figure Figure5,5, the negative sample showed relatively low fluorescence intensity, because little FITC-conjugated goat anti-human polyclonal antibody could attach to the surface of microspheres; on the contrast, the positive sample showed much brighter fluorescence. The fluorescence intensity can be transferred to digital data (Table
SampleAverage scoresStandard deviation
133 790368
223 269271
339 598307
4778452
521 222197
638 878290
722 437227
836 295334
941 024396
Negative20032
Open in a separate windowOpen in a separate windowFigure 5ELISA on the chip. The signals were collected by CCD of microscope. A: negative sample; B and C: positive samples.For the heterogeneous immunoreactions, the immobilization of the immune molecules is essential for the reaction efficiency. Herein, we utilized micro columns filled with pre-modified microspheres (beads) instead of the direct surface modification for the ELISA analysis. Compared with the traditional method, diagnosis using the microfluidic device took less than 10 min with only 2 μl sample consumption and little reagent consumption. The high efficiency might be attributed to the high surface modification efficiency by using beads as well as the advantages from microfluidic device itself. The C-Igl modified microspheres can be easily prepared in 1 h and preloaded inside the micro device for convenient application. The device is made from standard soft lithography by PDMS and its throughput can be easily improved by adding more micro columns into the microfluidic device in an economic manner, which is perfect for the onsite rapid and cheap diagnosis of amebiasis. Similar methodologies can be developed for diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.  相似文献   

2.
An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing     
Mao X  Nawaz AA  Lin SC  Lapsley MI  Zhao Y  McCoy JP  El-Deiry WS  Huang TJ 《Biomicrofluidics》2012,6(2):24113-241139
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

3.
An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model     
Katelyn L. Sellgren  Brian T. Hawkins  Sonia Grego 《Biomicrofluidics》2015,9(6)
We report a microfluidic blood-brain barrier model that enables both physiological shear stress and optical transparency throughout the device. Brain endothelial cells grown in an optically transparent membrane-integrated microfluidic device were able to withstand physiological fluid shear stress using a hydrophilized polytetrafluoroethylene nanoporous membrane instead of the more commonly used polyester membrane. A functional three-dimensional microfluidic co-culture model of the neurovascular unit is presented that incorporates astrocytes in a 3D hydrogel and enables physiological shear stress on the membrane-supported endothelial cell layer.  相似文献   

4.
An inexpensive microfluidic device for three-dimensional hydrodynamic focusing in imaging flow cytometry     
Yogesh M. Patel  Sanidhya Jain  Abhishek Kumar Singh  Kedar Khare  Sarita Ahlawat  Supreet Singh Bahga 《Biomicrofluidics》2020,14(6)
We present design, characterization, and testing of an inexpensive, sheath-flow based microfluidic device for three-dimensional (3D) hydrodynamic focusing of cells in imaging flow cytometry. In contrast to other 3D sheathing devices, our device hydrodynamically focuses the cells in a single-file near the bottom wall of the microchannel that allows imaging cells with high magnification and low working distance objectives, without the need for small device dimensions. The relatively large dimensions of the microchannels enable easy fabrication using less-precise fabrication techniques, and the simplicity of the device design avoids the need for tedious alignment of various layers. We have characterized the performance of the device with 3D numerical simulations and validated these simulations with experiments of hydrodynamic focusing of a fluorescently dyed sample fluid. The simulations show that the width and the height of the 3D focused sample stream can be controlled independently by varying the heights of main and side channels of the device, and the flow rates of sample and sheath fluids. Based on simulations, we also provide useful guidelines for choosing the device dimensions and flow rates for focusing cells of a particular size. Thereafter, we demonstrate the applicability of our device for imaging a large number of RBCs using brightfield microscopy. We also discuss the choice of the region of interest and camera frame rate so as to image each cell individually in our device. The design of our microfluidic device makes it equally applicable for imaging cells of different sizes using various other imaging techniques such as phase-contrast and fluorescence microscopy.  相似文献   

5.
An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments     
Mirit Hen  Maria Ronen  Alex Deitch  Efrat Barbiro-Michaely  Ziv Oren  Chaim N. Sukenik  Doron Gerber 《Biomicrofluidics》2015,9(5)
Microfluidic-based protein arrays are promising tools for life sciences, with increased sensitivity and specificity. One of the drawbacks of this technology is the need to create fresh surface chemistry for protein immobilization at the beginning of each experiment. In this work, we attempted to include the process of surface functionalization as part of the fabrication of the device, which would substitute the time consuming step of surface functionalization at the beginning of each protein array experiment. To this end, we employed a novel surface modification using self-assembled monolayers (SAMs) to immobilize biomolecules within the channels of a polydimethylsiloxane (PDMS) integrated microfluidic device. As a model, we present a general method for depositing siloxane-anchored SAMs, with 1-undecyl-thioacetate-trichlorosilane (C11TA) on the silica surfaces. The process involved developing PDMS-compatible conditions for both SAM deposition and functional group activation. We successfully demonstrated the ability to produce, within an integrated microfluidic channel, a C11TA monolayer with a covalently conjugated antibody. The antibody could then bind its antigen with a high signal to background ratio. We further demonstrated that the antibody was still active after storage of the device for a week. Integration of the surface chemistry into the device as part of its fabrication process has potential to significantly simplify and shorten many experimental procedures involving microfluidic–based protein arrays. In turn, this will allow for broader dissemination of this important technology.  相似文献   

6.
An integrated microfluidic cell array for apoptosis and proliferation analysis induction of breast cancer cells     
Song H  Chen T  Zhang B  Ma Y  Wang Z 《Biomicrofluidics》2010,4(4):44104
In vitro sensitivity testing of tumor cells could rationalize and improve the choice of chemotherapy and hormone therapy. In this report, a microfluidic device made from poly(dimethylsiloxane) and glass was developed for an assay of drug induced cytotoxicity. We evaluated the apoptotic and proliferation-inhibitory effects of anticancer drugs mitomycin C (MMC) and tamoxifen (TAM) using MCF-7 breast cancer cells. MMC and TAM both induced apoptosis and inhibited proliferation of MCF-7 cells in a concentration-dependent manner. MMC caused the expression of antiapoptotic protein Bcl-2 a dose-dependent reduction in MCF-7 cells. The expression of Bcl-2 did not change significantly in MCF-7 cells treated by TAM. The results in the microfluidic device were correlated well with the data obtained from the parallel experiments carried out in the conventional culture plates. The developed microfluidic device could be a potential useful tool for high content screening and high throughput screening research.  相似文献   

7.
An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells     
Huei-Wen Wu  Ruo-Chi Hsu  Chun-Che Lin  Shiaw-Min Hwang    Gwo-Bin Lee 《Biomicrofluidics》2010,4(2)
This study reports an integrated microfluidic system capable of isolation, counting, and sorting of hematopoietic stem cells (HSCs) from cord blood in an automatic format by utilizing a magnetic-bead-based immunoassay. Three functional modules, including cell isolation, cell counting, and cell sorting modules are integrated on a single chip by using microfluidic technology. The cell isolation module is comprised of a four-membrane-type micromixer for binding of target stem cells and magnetic beads, two pneumatic micropumps for sample transport, and an S-shaped channel for isolation of HSCs using a permanent magnet underneath. The counting and sorting of HSCs are performed by utilizing the cell counting and sorting modules. Experimental results show that a separation efficiency as high as 88% for HSCs from cord blood is achieved within 40 min for a sample volume of 100 μl. Therefore, the development of this integrated microfluidic system may be promising for various applications such as stem cell research and cell therapy.  相似文献   

8.
An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics     
Yang F  Chen Z  Pan J  Li X  Feng J  Yang H 《Biomicrofluidics》2011,5(2):24115
Seeking potential toxic and side effects for clinically available drugs is considerably beneficial in pharmaceutical safety evaluation. In this article, the authors developed an integrated microfluidic array system for phenotype-based evaluation of toxic and teratogenic potentials of clinical drugs by using zebrafish (Danio rerio) embryos as organism models. The microfluidic chip consists of a concentration gradient generator from upstream and an array of open embryonic culture structures by offering continuous stimulation in gradients and providing guiding, cultivation and exposure to the embryos, respectively. The open culture reservoirs are amenable to long-term embryonic culturing. Gradient test substances were delivered in a continuous or a developmental stage-specific manner, to induce embryos to generate dynamic developmental toxicity and teratogenicity. Developmental toxicity of doxorubicin on zebrafish eggs were quantitatively assessed via heart rate, and teratological effects were characterized by pericardial impairment, tail fin, notochord, and SV-BA distance ∕body length. By scoring the teratogenic severity, we precisely evaluated the time- and dose-dependent damage on the chemical-exposed embryos. The simple and easily operated method presented herein demonstrates that zebrafish embryo-based pharmaceutic assessment could be performed using microfluidic systems and holds a great potential in high-throughput screening for new compounds at single animal resolution.  相似文献   

9.
Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications     
P. F. O'Neill  A. Ben Azouz  M. Vázquez  J. Liu  S. Marczak  Z. Slouka  H. C. Chang  D. Diamond  D. Brabazon 《Biomicrofluidics》2014,8(5)
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.  相似文献   

10.
An integrated model for textual social media data with spatio-temporal dimensions     
《Information processing & management》2020,57(5):102219
GPS-enabled devices and social media popularity have created an unprecedented opportunity for researchers to collect, explore, and analyze text data with fine-grained spatial and temporal metadata. In this sense, text, time and space are different domains with their own representation scales and methods. This poses a challenge on how to detect relevant patterns that may only arise from the combination of text with spatio-temporal elements. In particular, spatio-temporal textual data representation has relied on feature embedding techniques. This can limit a model’s expressiveness for representing certain patterns extracted from the sequence structure of textual data. To deal with the aforementioned problems, we propose an Acceptor recurrent neural network model that jointly models spatio-temporal textual data. Our goal is to focus on representing the mutual influence and relationships that can exist between written language and the time-and-place where it was produced. We represent space, time, and text as tuples, and use pairs of elements to predict a third one. This results in three predictive tasks that are trained simultaneously. We conduct experiments on two social media datasets and on a crime dataset; we use Mean Reciprocal Rank as evaluation metric. Our experiments show that our model outperforms state-of-the-art methods ranging from a 5.5% to a 24.7% improvement for location and time prediction.  相似文献   

11.
Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment     
K. Hockemeyer  C. Janetopoulos  A. Terekhov  W. Hofmeister  A. Vilgelm  Lino Costa  J. P. Wikswo  A. Richmond 《Biomicrofluidics》2014,8(4)
Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the “single file” pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12.  相似文献   

12.
An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells     
Yu-Jui Che  Huei-Wen Wu  Lien-Yu Hung  Ching-Ann Liu  Hwan-You Chang  Kuan Wang  Gwo-Bin Lee 《Biomicrofluidics》2015,9(5)
Affinity reagents recognizing biomarkers specifically are essential components of clinical diagnostics and target therapeutics. However, conventional methods for screening of these reagents often have drawbacks such as large reagent consumption, the labor-intensive or time-consuming procedures, and the involvement of bulky or expensive equipment. Alternatively, microfluidic platforms could potentially automate the screening process within a shorter period of time and reduce reagent and sample consumption dramatically. It has been demonstrated recently that a subpopulation of tumor cells known as cancer stem cells possess high drug resistance and proliferation potential and are regarded as the main cause of metastasis. Therefore, a peptide that recognizes cancer stem cells and differentiates them from other cancer cells will be extremely useful in early diagnosis and target therapy. This study utilized M13 phage display technology to identify peptides that bind, respectively, to colon cancer cells and colon cancer stem cells using an integrated microfluidic system. In addition to positive selection, a negative selection process was integrated on the chip to achieve the selection of peptides of high affinity and specificity. We successfully screened three peptides specific to colon cancer cells and colon cancer stem cells, namely, HOLC-1, HOLC-2, and COLC-1, respectively, and their specificity was measured by the capture rate between target, control, and other cell lines. The capture rates are 43.40 ± 7.23%, 45.16 ± 7.12%, and 49.79 ± 5.34% for colon cancer cells and colon cancer stem cells, respectively, showing a higher specificity on target cells than on control and other cell lines. The developed technique may be promising for early diagnosis of cancer cells and target therapeutics.  相似文献   

13.
Inducing chemotactic and haptotactic cues in microfluidic devices for three-dimensional in vitro assays     
O. Moreno-Arotzena  G. Mendoza  M. Cóndor  T. Rüberg  J. M. García-Aznar 《Biomicrofluidics》2014,8(6)
Microfluidic devices allow for the production of physiologically relevant cellular microenvironments by including biomimetic hydrogels and generating controlled chemical gradients. During transport, the biomolecules interact in distinct ways with the fibrillar networks: as purely diffusive factors in the soluble fluid or bound to the matrix proteins. These two main mechanisms may regulate distinct cell responses in order to guide their directional migration: caused by the substrate-bound chemoattractant gradient (haptotaxis) or by the gradient established within the soluble fluid (chemotaxis). In this work 3D diffusion experiments, in combination with ELISA assays, are performed using microfluidic platforms in order to quantify the distribution of PDGF-BB and TGF-β1 across collagen and fibrin gels. Furthermore, to gain a deeper understanding of the fundamental processes, the experiments are reproduced by computer simulations based on a reaction-diffusion transport model. This model yields an accurate prediction of the experimental results, confirming that diffusion and binding phenomena are established within the microdevice.  相似文献   

14.
A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture     
Chung Yu Chan  Vasiliy N. Goral  Michael E. DeRosa  Tony Jun Huang  Po Ki Yuen 《Biomicrofluidics》2014,8(4)
In this article, we present a simple, rapid prototyped polystyrene-based microfluidic device with three-dimensional (3D) interconnected microporous walls for long term perfusion cell culture. Patterned 3D interconnected microporous structures were created by a chemical treatment together with a protective mask and the native hydrophobic nature of the microporous structures were selectively made hydrophilic using oxygen plasma treatment together with a protective mask. Using this polystyrene-based cell culture microfluidic device, we successfully demonstrated the support of four days perfusion cell culture of hepatocytes (C3A cells).  相似文献   

15.
An equipment-free polydimethylsiloxane microfluidic spotter for fabrication of microarrays     
Teng Tang  Gang Li  Chunping Jia  Kunpeng Gao  Jianlong Zhao 《Biomicrofluidics》2014,8(2)
This paper presents a low-cost, power-free, and easy-to-use spotter system for fabrication of microarrays. The spotter system uses embedded dispensing microchannels combined with a polydimethylsiloxane (PDMS) membrane containing regular arrays of well-defined thru-holes to produce precise, uniform DNA or protein microarrays for disease diagnosis or drug screening. Powered by pre-evacuation of its PDMS substrate, the spotter system does not require any additional components or external equipment for its operation, which can potentially allow low-cost, high-quality microarray fabrication by minimally trained individuals. Polyvinylpyrrolidone was used to modify the PDMS surface to prevent protein adsorption by the microchannels. Experimental results indicate that the PDMS spotter shows excellent printing performance for immobilizing proteins. The measured coefficient of variation (CV) of the diameter of 48 spots was 2.63% and that of the intensity within one array was 2.87%. Concentration gradient experiments revealed the superiority of the immobilization density of the PDMS spotter over the conventional pin-printing method. Overall, this low-cost, power-free, and easy-to-use spotting system provides an attractive new method to fabricate microarrays.  相似文献   

16.
A microfluidic model for organ-specific extravasation of circulating tumor cells     
R. Riahi  Y. L. Yang  H. Kim  L. Jiang  P. K. Wong  Y. Zohar 《Biomicrofluidics》2014,8(2)
Circulating tumor cells (CTCs) are the principal vehicle for the spread of non-hematologic cancer disease from a primary tumor, involving extravasation of CTCs across blood vessel walls, to form secondary tumors in remote organs. Herein, a polydimethylsiloxane-based microfluidic system is developed and characterized for in vitro systematic studies of organ-specific extravasation of CTCs. The system recapitulates the two major aspects of the in vivo extravasation microenvironment: local signaling chemokine gradients in a vessel with an endothelial monolayer. The parameters controlling the locally stable chemokine gradients, flow rate, and initial chemokine concentration are investigated experimentally and numerically. The microchannel surface treatment effect on the confluency and adhesion of the endothelial monolayer under applied shear flow has also been characterized experimentally. Further, the conditions for driving a suspension of CTCs through the microfluidic system are discussed while simultaneously maintaining both the local chemokine gradients and the confluent endothelial monolayer. Finally, the microfluidic system is utilized to demonstrate extravasation of MDA-MB-231 cancer cells in the presence of CXCL12 chemokine gradients. Consistent with the hypothesis of organ-specific extravasation, control experiments are presented to substantiate the observation that the MDA-MB-231 cell migration is attributed to chemotaxis rather than a random process.  相似文献   

17.
An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions     
Sepehr Maktabi  Noah Malmstadt  Jeffrey W. Schertzer  Paul R. Chiarot 《Biomicrofluidics》2021,15(2)
We present a microfluidic technique that generates asymmetric giant unilamellar vesicles (GUVs) in the size range of 2–14 μm. In our method, we (i) create water-in-oil emulsions as the precursors to build synthetic vesicles, (ii) deflect the emulsions across two oil streams containing different phospholipids at high throughput to establish an asymmetric architecture in the lipid bilayer membranes, and (iii) direct the water-in-oil emulsions across the oil–water interface of an oscillating oil jet in a co-flowing confined geometry to encapsulate the inner aqueous phase inside a lipid bilayer and complete the fabrication of GUVs. In the first step, we utilize a flow-focusing geometry with precisely controlled pneumatic pressures to form monodisperse water-in-oil emulsions. We observed different regimes in forming water-in-oil multiphase flows by changing the applied pressures and discovered a hysteretic behavior in jet breakup and droplet generation. In the second step of GUV fabrication, an oil stream containing phospholipids carries the emulsions into a separation region where we steer the emulsions across two parallel oil streams using active dielectrophoretic and pinched-flow fractionation separations. We explore the effect of applied DC voltage magnitude and carrier oil stream flow rate on the separation efficiency. We develop an image processing code that measures the degree of mixing between the two oil streams as the water-in-oil emulsions travel across them under dielectrophoretic steering to find the ideal operational conditions. Finally, we utilize an oscillating co-flowing jet to complete the formation of asymmetric giant unilamellar vesicles and transfer them to an aqueous phase. We investigate the effect of flow rates on properties of the co-flowing jet oscillating in the whipping mode (i.e., wavelength and amplitude) and define the phase diagram for the oil-in-water jet. Assays used to probe the lipid bilayer membrane of fabricated GUVs showed that membranes were unilamellar, minimal residual oil remained trapped between the two lipid leaflets, and 83% asymmetry was achieved across the lipid bilayers of GUVs.  相似文献   

18.
Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I     
Mazher-Iqbal Mohammed  Marc P. Y. Desmulliez 《Biomicrofluidics》2013,7(6)
Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care.  相似文献   

19.
Continuously perfused microbubble array for 3D tumor spheroid model     
Agastin S  Giang UB  Geng Y  Delouise LA  King MR 《Biomicrofluidics》2011,5(2):24110
Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow. The flow characteristics such as streamline directions, shear stress profile, and velocity profile inside the microfluidic system were first examined computationally using a COMSOL simulation. Colo205 tumor spheroids were created by a modified hanging drop method and maintained inside PDMS microbubble cavities in perfusion culture. Cell viability inside the microbubbles was examined by live cell staining and confocal imaging. E-selectin mediated cell sorting of Colo205 and MDA-MB-231 cell lines on functionalized microbubble and PDMS surfaces was achieved. Finally, to validate this microfluidic system for drug screening purposes, the toxicity of the anti-cancer drug, doxorubicin, on Colo205 cells in spheroids was tested and compared to cells in 2D culture. Colo205 spheroids cultured in flow showed a threefold increase in resistance to doxorubicin compared to Colo205 monolayer cells cultured under static conditions, consistent with the resistance observed previously in other MCTS models. The advantages presented by our microfluidic system, such as the ability to control the size uniformity of the spheroids and to perform real-time imaging on cells in the growth platform, show potential for high throughput drug screening development.  相似文献   

20.
An integrated holistic model for an eHealth system: A national implementation approach and a new cloud-based security model     
《International Journal of Information Management》2019
Although its structure and strategies are rapidly evolving, the impact of the eHealth on the healthcare services is evident. Implementing eHealth systems on a national level can drastically enhance the health practices and services provided to the patients and community. Hence, the engineering of a new model and a holistic framework for eHealth systems becomes a necessity in order to have an effective implementation of these systems. The vast and rapid development in computers, communication, and Internet technologies has significantly affected the contemporary health systems. However, the complexity of the healthcare environment, the abundance of information, the compatibility and the lack of unified eHealth framework creates real challenges to present efficient and attractive eHealth model that encompasses all these elements. Furthermore, the security of the health records and the secure access to the information add a new dimension of complexity. This work presents a new model and an integrated framework for an efficient implementation of eHealth systems at the national level. The proposed model and framework successfully incorporate all the success factors of efficient eHealth system along with a new security model to access the health records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号