首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in Science Education - Many nature of science (NOS) studies have demonstrated that teachers can improve their understandings of NOS with explicit and reflective instruction; however, the...  相似文献   

2.
The present article describes research carried out in Badajoz (Spain) with student teachers of Primary and Secondary science education. The preservice teachers conceptions of the nature of science were analyzeda and compared with their classroom practice when teaching a science lesson. The results indicated that there was no correspondence between the conceptions of the nature of science and the classroom practice. The implications of the research for science teacher education are dealt with.  相似文献   

3.
This study explores the relationship, if any, between an individual’s culturally based worldviews and conceptions of nature of science. In addition, the implications of this relationship (or lack of relationship) for science teaching and learning are discussed. Participants were 54 Taiwanese prospective science teachers. Their conceptions of nature of science and their worldviews specific to humans’ relationship with the natural world were assessed using two open‐ended questionnaires in conjunction with follow‐up interviews. Their understandings of nature of science were classified into informed and naïve categories based upon contemporary views of these constructs and those stressed in international reform documents. An anthropocentric–naturecentric continuum emerged and is used to explain the participants’ views about humans’ relationship with Nature. Participants who recognized the limitations of scientific knowledge, and accept the idea that science involves subjective and cultural components, were more likely to emphasize harmony with Nature. In contrast, participants who possessed narrow views about the scientific enterprise and described science as close to technology and as of materialistic benefit tended to provide an anthropocentric perspective regarding the human–Nature relationships. The findings illustrate the interplay between participants’ sociocultural beliefs and conceptions of nature of science. Concisely, people with different worldviews may have concurrently different views about nature of science. The study suggests the need for incorporating sociocultural perspectives and nature of science in the science curriculum.  相似文献   

4.
5.
Research in Science Education - There is an increasing demand in the field of science education for the incorporation of philosophical and sociological aspects that are related to the scientific...  相似文献   

6.
Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students’ science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n?=?10), observations of classroom practices and analyses of the teachers’ accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.  相似文献   

7.
This study examines Chinese pre-service teachers’ (N?=?30) views on the nature of science (NOS) and how Chinese culture influences their views. Participants were from two teachers’ universities in eastern China. As an exploratory and interpretive study, a scenario-based interview approach was adopted. The results indicated that the participants held unique views about the five key aspects of NOS. Many participants have alternative and contemporary views of NOS, but few possess classical views. In fact, teachers adopted features of the Confucian Doctrine of the Mean either consciously or unconsciously to account for their views of NOS. This research reflects that the Doctrine of the Mean affected Chinese teachers’ views of NOS, making them rather deficient in their understandings of classical NOS. Based on empirical data, it is argued that science teacher training in China should focus on the content and objectives of classical NOS, rather than just teaching contemporary views of NOS. Taking Chinese culture into consideration, science teacher education in China cannot entirely import the strategies of teaching the classical views of NOS from the developed world, but should develop, design and contextualize local strategies that are suitable for the training of Chinese science teachers. Some issues for further investigation of learners’ views of NOS in non-Western contexts are suggested as implications from this study.  相似文献   

8.
Science & Education - There is widespread agreement that an adequate understanding of the nature of science (NOS) is a critical component of scientific literacy and a major goal in science...  相似文献   

9.
10.
This study investigated prospective elementary teachers’ understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed–Creative, Testable, Amoral, and Unified. The learning environment was assessed using previously-validated and reliable scales from What Is Happening In this Class? (WIHIC) and the Science Laboratory Environment Inventory (SLEI). Analyses indicated moderate multiple correlations that were statistically significant (p?<?0.01) between Creative (R?=?0.22), Testable (R?=?0.29), and Unified (R?=?0.27), and a positive learning environment. Regression coefficients revealed that Open-Endedness was a significant independent predictor of students’ understanding of the role of creativity in science (β?=?0.16), while Cooperation, Open-Endedness, and Material Environment were linked with understanding the testable nature of science (β?=?0.10–0.12). Interview questions probed possible relationships between an improved understanding of the nature of science and elements of a positive classroom environment. Responses suggested that an appropriate level of open-endedness during investigations was very important as this helped students grapple with abstract nature of science concepts and shift their conceptions closer to a more realistic view of scientific practice.  相似文献   

11.
12.
13.
Science & Education - The goal of this study was to explore the influencing factors of pre-service science teachers’ pedagogical content knowledge (PCK) for targeted aspects of nature of...  相似文献   

14.
The findings reported in this paper report on an investigation of Chinese people’s understanding of the nature of science in relation to their conceptualisations of Nature. As an exploratory and interpretive study, it uses semi-structured interviews with 25 Chinese secondary school science teachers. The paper first presents these teachers’ conceptualisations of Nature, which were mainly scientifically informed and showed a mixed influence of both traditional and modern Chinese ideas about Nature. Teachers’ functional understandings of the nature of science were then inferred from their conceptualisations of Nature and presented from three perspectives: that of science; the strategies and approaches to doing science; and, the status of scientific knowledge.  相似文献   

15.
A 30-item questionnaire was designed to determine Omani science teachers’ attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The questionnaire was administered to 139 randomly selected science teachers who teach science in grades 5–10. The sample consisted of 72 male teachers and 67 female teachers, 57 teachers with teaching experience between 1 and 5 years and 82 teachers with teaching experience of 6 and more years. The sample was selected from 7 schools in 1 Educational Governorate in the Sultanate of Oman. The questionnaire reliability was calculated by an internal consistency method, using Cronbach’s alpha, which gave the value of 0.73 for all the items. The findings indicated that science teachers’ attitudes toward teaching science were positive. Furthermore, the results showed that there were statically significant differences in teachers’ attitudes due to gender in favor of the female teachers and in teaching experience in favor of teachers with long experience. The study proposed some recommendations to improve the science teachers’ attitude, especially male teachers towards science teaching. Paying more attention to in-service professional development programs, encouraging new teachers to attend some classes to observe experienced colleagues, and finally rewarding teachers morally, socially, and financially are some of these recommendations.  相似文献   

16.
Misconceptions about climate change science are pervasive among the US public. This study investigated the possibility that these misconceptions may be reflective of science teachers’ knowledge and teaching of climate change science. Florida and Puerto Rico secondary science teachers who claim to teach extensively about climate change were surveyed in regard to their conceptions of climate change science and the climate change-related topics they teach. Results show that many teachers hold naïve views about climate change (e.g. that ozone layer depletion is a primary cause of climate change) and climate change science (e.g. that it must be based on controlled experiments for it to be valid). In addition, teachers in both groups neglect crucial topics such as how evidence for climate change is developed and the social, political, and economic dimensions of climate change. Our results suggest the need for teachers to understand how to teach climate change and the nature of climate change science using authentic contexts that promote effective socioscientific decision-making and climate change mitigation.  相似文献   

17.
Science education video game research points toward promising, but inconclusive results in both student learning outcomes and attitudes. However, student-level variables other than gender have been largely absent from this research. This study examined how students’ reading ability level and disability status are related to their video game-playing behaviors outside of school and their perceptions about the use of science video games during school. Thirty-four teachers and 876 sixth- through ninth-grade students from 14 states participated in the study. All student groups reported that they would prefer to learn science from a video game rather than from traditional text, laboratory-based, or Internet environments. Chi-square analyses indicated a significant association between reading ability level, disability status, and key areas of interest including students’ use of video games outside of school, their perceptions of their scientific abilities, and whether they would pursue a career in the sciences. Implications of these findings and areas for future research are identified.  相似文献   

18.
The aim of this research is to ascertain teachers’ opinions on what elements of nature of science (NOS) and science–technology–society relationships (STS) should be taught in school science. To this end an adapted version of the questionnaire developed by Osborne et al. is used. Our results show that experts consulted by Osborne et al. and Spanish teachers confer similar importance on the provisional, experimental, and predictive nature of scientific knowledge based on some of the procedures used such as the drawing up of hypotheses and the analysis and interpretation of data. We also look into the relationship between the teachers’ views and their educational background. 1 1. In this article, Educational Background means the scientific training gained by teachers at university. Results suggest that philosophy teachers are more concerned with the inclusion of NOS and STS topics in science curricula than science teachers, although further studies will be necessary. Some suggestions concerning the university training of science teachers are also discussed.  相似文献   

19.
Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers’ understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers’ knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.’s (Journal of Research in Science Teaching, 39(6), 497–521, 2002) concepts of NOS and notions of “naive” and “informed” understandings of NOS and Hay’s (Studies in Higher Education, 32(1), 39–57, 2007) notions of “surface” and “deep” learning were used as frameworks to examine the participants’ specific understandings of NOS and the depth of their learning. The ways in which participants’ understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants’ professional learning is also discussed.  相似文献   

20.
Like their students, teachers may hold a variety of naïve conceptions that have been hypothesized to limit their ability to support students’ learning. This study examines whether changes in elementary students’ conceptions are related to their teachers’ content knowledge, attitudes, and understanding of conceptual change. The study takes place in the context of the adoption of a new unit on seasonal change in which students build and use sundials to observe seasonal differences in the apparent motion of the Sun across the sky. A mixed-method approach is used. Data sources include pre- and post-tests for students and teacher interviews and questionnaires. Results indicate that changes in students’ conceptions may be related to their teachers’ knowledge of the content, attitudes toward science, and understanding of conceptual change. One teacher had low attitude toward science and limited knowledge of conceptual change. After instruction, her students’ responses became less accurate but more homogeneous than before instruction. The other teacher had high attitude and moderate knowledge of conceptual change. Her students showed gains from pre- to post-test, including responses that were more scientifically accurate than the teachers’ initial answers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号