首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in Science Education - This article reports on the effect of using a diagram to develop primary students’ conceptual understanding about electric circuits. Diagrammatic...  相似文献   

2.
Science & Education - For many historians of science and science educators, the method of replicating historical scientific apparatus and experiments provides an avenue for science learning,...  相似文献   

3.
The objective of this study was to evaluate the effect of a dynamic software simulation on the understanding of the kinetic molecular theory by 7th graders. Students in the control group (n = 62) studied a curricular unit that addressed the differences in arrangement and motion of molecules in the three phases of matter. The experimental group (n = 71) studied the same unit combined with a few computer lessons using a software simulation. The results indicate that the students in the experimental group scored significantly higher than those in the control group. Nonetheless, while both groups of students improved their understanding of the kinetic molecular theory, the overall achievements were very low. These findings suggest that the simulation improved the understanding of the 7th graders; however, it was insufficient in itself to promote meaningful learning. Statistically significant gender differences were not observed. This paper concludes with a discussion of the educational implications of this study.  相似文献   

4.
This study investigated the effect of non-traditional guided inquiry instruction on middle school students’ conceptual understandings of lunar concepts. Multiple data sources were used to describe participants’ conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a constant comparative method to produce profiles of each participant’s conceptual understandings and nonparametric tests also were used. Results revealed very positive performance for observable moon phases and patterns of change, as well as the cause of moon phases. Results indicated that significantly more participants shifted from drawing nonscientific shapes on the pretest to drawing scientific shapes on the post-test. Results for the drawings of moon phase sequences were similar in that significantly more participants shifted from drawing alternative waxing and waning sequences on the pretest to drawing scientific sequences on the post-test. Also, significantly more participants shifted from alternative understanding of the cause of the moon phases on the pretest to scientific understanding on the post-test. Implications of these findings and recommendations for further research are provided.  相似文献   

5.
Journal of Science Education and Technology - This study aims to explore the impact of an augmented reality (AR) scientific inquiry tool based on a brain-computer interface (BCI) on students’...  相似文献   

6.
Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513–536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74–101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513–536, 2004). Lee and Witz (International Journal of Science Education 31:931–960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers’ practices of teaching SSI. This study presents case studies that investigated the development of secondary school students’ science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students’ understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371–391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.  相似文献   

7.
The paper reports on part of a large-scale study aimed at examining students’ perceptions of teacher–student interactions. This paper will report on a study utilising mixed methodology in 12 Queensland primary classrooms. After the students’ perceptions were established, the teachers, through a consultative process, developed strategies to change the students’ perceptions of their classroom over a 3 month period. The paper reports on what strategies these teachers utilised and what changes in students’ perceptions resulted. The classroom teachers were interviewed about the change in students’ perceptions, what changes they had sought to promote in their classrooms, and what they felt had been achieved in their classrooms. The study found that students were able to articulate what changes the teacher had implemented, what their reaction was to these changes and their perception of the classroom environment as a result of these implemented strategies.  相似文献   

8.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   

9.
Traditional multiple-choice concept inventories measure students?? critical conceptual understanding and are designed to reveal students?? na?ve or alternate ideas. The overall scores, however, give little information about the state of students?? knowledge and the consistency of reasoning. This study investigates whether students have consistent alternate models when reasoning about Newton??s third law principle in the context of electromagnetics (EM), and whether these possible models are related to conceptual change and overall performance. Students?? conceptual understanding is evaluated with The Conceptual Survey of Electricity and Magnetism (CSEM) multiple-choice test. The data (N?=?118) are collected from an undergraduate static field theory course at the Helsinki University of Technology, Finland. The data are analysed using frequency distributions, Fisher??s exact test, and One-Way ANOVA analysis. The study shows that every fifth student has a consistent or partially consistent alternate model of Newton??s third law principle in the context of EM prior to instruction. Students with this alternate model perform significantly (p?=?0.01) better on the overall concept test and are more likely to change conceptual understanding towards a correct model compared to students in an inconsistent mixed model state.  相似文献   

10.
Science & Education - Scientific advances, particularly in evolutionary biology, genetics, neuroscience and artificial intelligence, present many challenges to religious and popular notions of...  相似文献   

11.
The present study focused on investigating the effectiveness of instruction via newly developed teaching materials based on cooperative learning when compared to a traditional approach, on ninth grade students’ understanding of metallic bonding. Fifty-seven ninth grade science students from two science classes in the same high school participated in this study. The same teacher taught metallic bonding with cooperative learning to an experimental group (N = 28) and with a traditional teacher centred approach to a control group (N = 29). Students’ conceptual understanding of metallic bonding was measured using the Metallic Bonding Concept Test. The results from the Student’s t test indicated that the mean score of the students in the experimental group was significantly higher in the experimental group (78.60, SD = 8.62), than in the control group (54.33, SD = 9.11) after treatment. In the light of the results from the concept test and individual interviews, the misconceptions related to metallic bonding were found less in the experimental group than traditional. Five of these misconceptions were firstly identified in this study. The individual interviews which were done with students from experimental group immediately after the instruction showed that students had positive perceptions about their cooperative work experiences.  相似文献   

12.
Context-based learning has become a widespread approach in science education. While positive motivational effects of such approaches have been well established empirically, clear results regarding cognitive aspects of students’ learning are still missing. In this article, we argue that this circumstance might be mainly rooted in the definition of context itself. Based on this argument, we shift from the issue of if contexts are cognitively beneficial to focus on the question of which composition of contexts is, at least by tendency, more effective than another. Based on theories of conceptual change, we therefore conducted a small-scale intervention study comparing two groups of students learning in different sets of contexts focusing on the same scientific concept—the cross-cutting concept of energy. Results suggest that learning in a more heterogeneous set of contexts eases transfer to new contexts in comparison to learning in a more homogeneous set of contexts. However, a more abstract understanding of the energy concept does not seem to be fostered by either of these approaches. Theoretical as well as practical implications of these finding are discussed.  相似文献   

13.
Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic genetics study using bioinformatics tools. The main purpose of the study outlined here is to examine how learning using this research simulation influences students’ understanding of genetics, and how students’ approaches to learning using the simulation influence their learning outcomes. Using both quantitative and qualitative procedures, we were able to show that while learning using the simulation students expanded their understanding of the relationships between molecular mechanisms and phenotype, and refined their understanding of certain genetic concepts. Two types of learners, research-oriented and task-oriented, were identified on the basis of the differences in the ways they seized opportunities to recognize the research practices, which in turn influenced their learning outcomes. The research-oriented learners expanded their genetics knowledge more than the task-oriented learners. The learning approach taken by the research-oriented learners enabled them to recognize the epistemology that underlies authentic genetic research, while the task-oriented learners referred to the research simulation as a set of simple procedural tasks. Thus, task-oriented learners should be encouraged by their teachers to cope with the scientists’ steps, while learning genetics through the simulation in a class setting.  相似文献   

14.
The present paper describes the design of teaching materials that are used as learning tools in school visits to a science museum. An exhibition on ‘A century of the Special Theory of Relativity’, in the Kutxaespacio Science Museum, in San Sebastian, Spain, was used to design a visit for first‐year engineering students at the university and assess the learning that was achieved. The first part of the paper presents the teaching sequence that was designed to build a bridge between formal teaching and the exhibition visit. The second part analyses the potential of the exhibition and the aforementioned teaching sequence to influence the students’ knowledge of three aspects of the Special Theory of Relativity. The results obtained show that the design of the visit, with both pre‐visit and follow‐up activities, was effective as a means of increasing students’ understanding and stimulating their ability to argue scientifically.  相似文献   

15.
Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students’ learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be considered that there are two methods of approaching Newtonian mechanics. One method is called the ‘prediction approach’, and the other is called the ‘explanation approach’. The ‘prediction approach’ refers to the application of the principles of Newtonian mechanics. We commonly use the prediction approach because its logical process is natural to us. However, its use is correct only when a force, such as gravitation, is exactly known. On the other hand, the ‘explanation approach’ could be used when the nature of a force is not exactly known. In the workshop, students read a short text offering contradicting ideas about whether to analyze a friction situation using the explanation approach or the prediction approach. Twenty-two college students taking an upper-level mechanics course wrote their ideas about the text. The participants then discussed their ideas within six groups, each composed of three or four students. Through the group discussion, students were able to clarify their preconceptions about friction, and they responded to the group discussion positively. Students started to think about their learning from a holistic perspective. As students thought and discussed the friction problems in the manner of hermeneutical circles, they moved toward a better understanding of friction.  相似文献   

16.
Science & Education - Nature of science (NOS) is considered an important aspect of scientific literacy. Despite efforts in guiding school students to develop more adequate NOS views, little is...  相似文献   

17.
18.
This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that individuals build mental representations to help them understand how a physical system works. Individuals use these representations to explain reality, depending on the context and the contents involved. Therefore, we have designed a questionnaire with an emphasis on explanations and an interview, so as to analyse students' reasoning. We found that most of the students failed to distinguish between macroscopic levels described in terms of fields and microscopic levels described in terms of the actions of fields. It is concluded that although the questionnaire and interviews involved a limited range of phenomena, the identified explanations fall into three main categories that can provide information for curriculum development by identifying the strengths and weaknesses of students' conceptions.  相似文献   

19.
This study explored undergraduate students’ understanding of the chemistry topic of thermodynamics using a 4-tier diagnostic instrument, comprising 30 questions, and follow-up interviews. An additional objective of the study was to assess the utility of the 4-tier instrument for use in studies on alternative conceptions (ACs) as there has been no study done on it since its introduction in the literature in the year 2010. A total of 296 students majoring in Chemistry at a university in Singapore participated in this study—88 students in the preliminary study, 102 students in the pilot study and 106 students in the main study. This article reports on the results obtained with students in the main study; their age ranges from 20 to 22 years. Comprising answer and reason tiers plus associated confidence ratings, the 4-tier diagnostic instrument enabled the eliciting of 34 ACs harbored by the undergraduates as well as the strengths of these ACs. Of concern to note is that even for questions which were answered correctly, the mean confidence was not very high. The results of this study reiterate the point that thermodynamics is a topic fraught with conceptual difficulties and ACs. Based on the results from this study, the potential of the 4-tier test for AC studies is further underscored. Some implications of the study are discussed.  相似文献   

20.
This study investigated the effects of a collaborative science intervention on high achieving students’ learning anxiety and attitudes toward science. Thirty‐seven eighth‐grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20‐week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty‐eight eighth‐grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants’ learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow‐up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号