首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students’ understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students’ understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher’s reflection journal. Pre-test–post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students’ texts provided further evidence of the students’ ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers’ approaches to these aspects of instruction around chemical bonding.  相似文献   

2.
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of “hands-on” instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students’ representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students’ accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.  相似文献   

3.
The aim of this study was to examine the potential impact of the representational characteristics of models and students’ educational levels on students’ views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the nature of models, the nature of modeling, and the purpose of models. The three scales of representational characteristics included modality, dimensionality, and dynamics. A total of 102 eighth graders and 87 eleventh graders were surveyed. Both quantitative data and written responses were analyzed. The influence of the representational characteristics seemed to be more salient on the nature of models and the purpose of models. Some interactions between the educational levels and the representational characteristics showed that the high school students were more likely to recognize textual representations and pictorial representations as models, while also being more likely to appreciate the differences between 2D and 3D models. However, some other differences between educational levels did not necessarily suggest that the high school students attained more sophisticated VSMM. For instance, in considering what information should be included in a model, students’ attention to particular affordances of the representation can lead to a more naive view of modeling. Implications for developing future questionnaires and for teaching modeling are suggested in this study.  相似文献   

4.
A productive approach to studying the role of representations in supporting students’ learning of science content is to examine their actions from a practice perspective. The current study examines kindergarten and first‐grade students’ representational practices across a consistent context—the creation of storyboards—both before and after a curricular intervention in order to highlight those aspects of their practices that changed regardless of a superficially similar task. Analysis of the students’ storyboards reveals considerable improvement in the number of included features after the intervention. Analysis of the students’ practices as they changed over time is also presented by examining the students’ discourse, with a focus on their discussions of the science content and the representations themselves. We demonstrate an increase in accuracy and relevance of the features being discussed, as well as an increase in requesting and providing assessments of students’ representations, particularly between students and their peers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号