首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

2.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

3.
由一次函数y=f(x)=kx b的图象,我们易得下面的性质: 1° 若k>0(<0),则y=kx b在(-∞, ∞)上是增(减)函数。 2° 若(x_1,y_1)、(x_2,y_2)是函数图象上任意两点,则有(y_1-y_2)/(x_1-x_2)=k。  相似文献   

4.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

5.
对于二元一次不定方程ax by=c,这里a,b,c为整数,且(a,b)=1,在利用通解公式{x=x_0 bt y=y_0-at;(t为整数),求它的整数解时,特解x_0,y_0的求法是难点,也是关键.  相似文献   

6.
关于圆锥曲线弦的求法,笔者得到一条结论,现提供于下。 定理:设圆锥曲线C的方程为F(x,y)=0,M、N为C上不同两点,若线段MN的中点为P(a,b),则直线MN的方程为 F(x,y)-F(2a-x,2b-y)=0。 (*) 证明:设M点的坐标为(x_1,y_1),M在圆锥曲线C上,F(x_1,y_1)=0。又因为线段MN的中点P的坐标为(a,b),N的坐标为(2a-x_1,2b-y_1)。又N在圆锥曲线C上,  相似文献   

7.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

8.
夏国华 《考试》2003,(3):43-44
2002年上海春季高考数学试卷中有这样一道题:第(22)题:若存在 x_0∈R,使 f(x_0)=x_0成立,则称 x_0为f(x)的不动点。已知 f(x)=ax~2+(b+1)x+b=1(a≠0)(1)a=1,b=-2,求 f(x)的不动点;(2)若对实数 b 函数 f(x)恒有两个相异的不同点,求 a 的范围;  相似文献   

9.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

10.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

11.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

12.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

13.
<正>我们知道,若点P(x_1,y_1),Q(x_2,y_2)在直线l:f(x,y)=0的两侧,则f(x_1,y_1)·f(x_2,y_2)<0,反之也成立.利用这个性质可巧妙地解决一类直线斜率的范围问题,现举例说明之.  相似文献   

14.
1.配方法 对于二次函数y=ax~2+bx+c,通过配方可得: y=a(x+(b/2a))~2+((4ac-b~2)/4a)。 由二次函数的极值性可知: 若a<0,则y有极大值,当x=-b/2a时,y_(max)=4ac-b~2/4a;若a>0,则y有极小值,当x=-b/2a时,y_(min)=4ac-b~2/4a。  相似文献   

15.
在理工科高等数学教材中通常是这样来叙述隐函数存在定理的:定理设函数 F(x,y,z)在点 P(x_0,y_0,z_0)的某一邻域内具有连续的偏导数,且 F(x_0,y_0,z_0)=0,F_(x_0,y_0,z_0)≠0,则方程 F(x,y,z)=0在(x_0,y_0)的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数 z=f(x,y),它满足条件 z_0=f(x_0,y_0),并有=-F_x/F_z,=-F_y/F_z。但在许多教材中举例时均不验证 F(x_0,y_0,z_0)=0这一必要条件,因而可能出现谬误,在教材[2]119  相似文献   

16.
一、配方法函数y=f(x)=ax~2+bx+c(a■0),配方后有:y=a(x+b/(2a))+(4ac-b~2)/(4a),,由此,若a>0,当x=-(b/(2a))时,y_(min)=(4ac-b~2)/(4a);若a<0,当x=-(b/(2a))时,y_(max)=(4ac-b~2)/(4a).  相似文献   

17.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

18.
在解有关二次函数区间极值问题时,学生会经常出现错误,现在举例说明,以期引起注意。我们知道,二次函数y=ax~2+bx+c(x∈R)有极值;(1)如a>0,则当x=-(b/(2a))时,有y_(min)=-  相似文献   

19.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

20.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号