首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设△ABC的三内角A,B,C所对的边分别为a,b,c,外接圆半径为R,则有正弦定理(a/sin A)=(b/sin B)=(c/sin C)=2R.余弦定理a~2=b~2+c~2-2bccos A,b~2\c~2+a~2-2cacos B,c~2=a~2+b~2-2abcos C.在学完正余弦定理后,老师给我们提出了这样的间题:由于正弦定理可变形为α=2Rsin A,b=2Rsin B,c=2RsinC三种形式,而余弦定理也有三种形式,因此,对于余弦定理是否也有类似于正  相似文献   

2.
我们在初中已学过正弦定理和余弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为R,则有 a/sinA=b/sinB=c/sinC=2R及 a~2=b~2+c~2-2bccosA. 应用正弦定理把余弦定理中的边都化为角,则有: sin~2A=sin~2B+sin~2C-2sinBsinCcosA. 可以证明当A+B+C=kπ,k为奇数时此式都成立。我们不妨把上式称为正——余弦定理。下面举例说明这个定理的应用。例1 求sin~210°+cos~240°+sin10°cos40°的值。  相似文献   

3.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

4.
定理 设△ ABC的内心为 I,R,R1 ,R2 ,R3 分别是△ABC,△IBC,△ICA,△IAB的外接圆半径 ,则有R1 +R2 +R3 ≤ 3R,(1)R1 · R2 · R3 ≤ R3 . (2 )当且仅当△ ABC为正三角形时 ,(1)、(2 )取图 1等号 .证明 如图1,设 BC=a,CA=b,AB =c,因 I是△ABC的内心 ,则有sin∠ BIC=sin(180°- B+C2 ) =cos A2 .(3)由正弦定理及 (3)式可得R1 =a2 sin∠ BIC=2 Rsin A2 cos A2=2 Rsin A2 .同理可得R2 =2 Rsin B2 ,R3 =2 Rsin C2 .结合熟知的三角不等式sin A2 +sin B2 +sin C2 ≤ 32 及sin A2 sin B2 sin C2 ≤ 18,可得R1 +R2 +R…  相似文献   

5.
众所周知 ,在△ ABC中 ,A,B,C为三个内角 ,a,b,c为对应三边 ,R为△ABC的外接圆半径 ,则有正弦定理  asin A=bsin B=csin C=2 R.正弦定理是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理 .灵活运用正弦定理解几何题 ,往往可以避免因添设辅助线所带来的困难 ,而且在许多情况下 ,能使证明思路自然 ,解法简捷明快 .使用正弦定理 ,应注意它的变形 :(1) ab=sin Asin B,bc=sin Bsin C,ca=sin Csin A.这表明 ,通过正弦定理 ,可实现边长之比与角的正弦之比的相互转化 ,从而将边的关系转化为角的关系用三角知识来解决 ,或者是将…  相似文献   

6.
在△ ABC中 ,角 A,B,C所对的边分别为 a,b,c,S是△ ABC的面积 ,由半角公式tan α2 =1 - cosαsinα 及余弦定理易得一组正切公式 :tan A2 =a2 - ( b- c) 24 S ,tan B2 =b2 - ( c- a) 24 S ,tan C2 =c2 - ( a- b) 24 S .由余弦定理可得一组余切公式 :cot A=b2 + c2 - a24 S ,cot B=c2 + a2 - b24 S ,cot C=a2 + b2 - c24 S .这两组公式结构对称 ,易于记忆 ,作用类似于正弦定理、余弦定理 ,用于解一些三角题可达到事半功倍的效果 .本文精选几例 ,以飨读者 .例 1 设 a,b,c是三角形的三条边 ,α,β,γ是这三条边的对角 ,如果 a2 + b2 …  相似文献   

7.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

8.
一、利用正弦、余弦定理结合面积公式求三角形的面积 例1(2012年高考江西理18)在△ABC中,角A,B,C的对应边分别为a,b,c.已知A=π/4,并且bsin(π/4+C)-csin(π/4+B)=a. (1)求证:B-C=π/2; (2)若a=√2,求△ABC的面积. 解析:(1)已知由bsin(π/4+C)-csin(π/4+B)=a,应用正弦定理得: sin Bsin(π/4+C)-sin Csin(π/4+B)=sin A.  相似文献   

9.
余弦定理:a2=b2 c2-2bcosAb2=a2 c2-2acosBc2=a2 b2-2abcosC正弦定理:asinA=sinbB=sincC=2R把正弦定理变形为:a=2RsinA,b=2RsinB,c=2RsinC回代余弦定理并整理可得形似余弦定理的一组公式:sin2A=sin2B sin2C-2sinBsinCcosAsin2B=sin2A sin2C-2sinAsinCcosBsin2C=sin2A sin2B-2sinAsinBcosC(A B C=180°)※应用公式※不仅可以简捷地解答某些相关问题,而且也为此类问题的解决提供了新的思想方法.【例1】求sin210° cos240° sin10°cos40°的值.分析:所求式与公式※形式不尽相同不能直接应用公式.但需:①化为同名函数;②调整系数…  相似文献   

10.
<正>一、问题与解答问题在锐角三角形ABC中,已知A,B,C分别为△ABC三边a,b,c所对的角,且■(1)求角B的大小;(2)若b=2■,求a+c的取值范围.解(1)由条件得bcos A+acos B=■bsin C,再运用正弦定理,得sin Bcos A+sin Acos B=■sin Bsin C,即sin(A+B)=■sin Bsin C,亦即sin C=■sin Bsin C,  相似文献   

11.
如图1,△ABC的角A,B,C所对之边分别为a,b,c.AD,BE,CF为三条高,H为垂心,则△DEF是垂足三角形.又命R和Δ分别为△ABC的外接圆半径和面积,文[1]给出了垂足三角形的周长l0和面积Δ0的公式:l0=4Rsin Asin Bsin C,(1)Δ0=2Δcos Acos Bcos C.(2)可惜其证明太长,现简证如下:先证(1)式.注意到B,C,E,F四点共圆,故有∠AFE=∠C.在△AEF中运用正弦定理,有EFsin A=sin∠AEAFE=cscions C A,所以EF=sinc C·sin Acos A.至此,EF与l0有两种表达式:其一,由于sinc C=sina A,所以EF=acos A.同理,FD=bcos B,DE=ccos C,因而l0=acos A b…  相似文献   

12.
余弦定理和正弦定理是中学数学中的重要内容之一 ,两者可互为依据 ,相互推导 .随着学生学习的深入 ,知识面的扩大 ,抽象思维能力的提高 ,可进一步从不同的角度揭示二者的关系 ,加强应用 .余弦定理 :在△ ABC中 ,三边 a,b,c和它们所对的角∠ A,∠ B,∠ C之间有如下关系 :a2 =b2 c2 - 2 bc cos A,b2 =a2 c2 - 2 ac cos B,c2 =a2 b2 - 2 ab cos C.例 1 求证在△ ABC中 ,(1 ) a=b cos C x cos B;(2 ) asin A=bsin B=csin C.证 :(1 )由余弦定理b2 =a2 c2 - 2 ac cos B,c2 =a2 b2 - 2 ab cos C,所以 b2 c2 =2 a2 b2 c2 - 2 ac co…  相似文献   

13.
绝妙解法     
题目求 sin~210°+cos~240°+sin10°cos40°的值.解△ABC 中,由余弦定理和正弦定理,有a~2=b~2+c~2-2bccosA, (1)(a/(sina))=(b/(sinB))=(c/(sinC))=k (2)由 a=ksinA,b=ksinB,c=ksinC 代入(1)得sin~2A=sin~2B+sin~2C-2sinBsinC·cosA. (3)  相似文献   

14.
<正>本刊2014年第11期发表了施元兰老师的文章"运用余弦定理解三角形的一类错误认识",[1]施老师对文中例3:在△ABC中,已知a=6,b=5,A=2B,则c的值是_.给出了以下的解法1和解法2.解法1:由正弦定理可求得cos B=3/5,然后求出sin B=4/5,sin A=2sin Bcos B=24/25,cos A=2cos[1]施老师对文中例3:在△ABC中,已知a=6,b=5,A=2B,则c的值是_.给出了以下的解法1和解法2.解法1:由正弦定理可求得cos B=3/5,然后求出sin B=4/5,sin A=2sin Bcos B=24/25,cos A=2cos2B-1=-7/25,所以sin C=sin(A+B),sin Acos B+cos Asin B=44/125,再由正弦定  相似文献   

15.
题目在AABC中,a,b,c分别为角A,B,C的对边,且sin2A sin2B=1,则△ABC为().A.锐角三角形B.钝角三角形C.直角三角形D.无法判断笔者在询问学生答案时,几乎所有的学生都选择了C,资料的答案也是直角三角形.错解由正弦定理并sin2A sin2B=1,得(a/2R)2 (b/2R)2=1,即a2 b2=(2R)2.进而有c=2  相似文献   

16.
在△ABC中利用正弦定理:(a/sinA)=(b/sinB)=(c/sinC)=2R (acosA) (bcosB)=2R(sinAcosA sinBcosB)=R(sin2A sin2B)=2Rsin(A B)cos(A-B)=2RsinCcos(A-B)=ccos(A-B)≤c (当且仅当A=B时取等号), 同理bcosB ccosC≤a;  相似文献   

17.
已知a、b、c是△ABC的三条边,如果∠C=90°,那么a~2+b~2=c~2, (1)如果∠C≠90°,那么a~2=b~2+c~2-2bccosA, (2)由正弦定理, a=2RsinA,b=2RsinB,c=2RsinC分别代入(1),(2)可得 sin~2A+sin~2B=sin~2C, (3) sin~2A=sin~2B+sin~2C-2sinBsinCcosA。(4) 上面(1),(2)是我们熟知的勾股定理和余弦定理,而(3),(4)是由正弦定理推导出来的含角(不含边)的关系式,类似勾股定理和余弦定理(实际上是和勾股定理、余弦定理等价)的形式,不妨称之为“角形式的勾股定理和余弦定理”。应用这两个定理,可使某些数  相似文献   

18.
正弦定理和余弦定理是解斜三角和判定三角类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.在近年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其他三个元素问题.【例1】在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边.若∠A=105°,∠B=45,b=22,则c=.解:由正弦定理,得sinbB=sincC,即si2n425°=sinc30°,解得c=2.【例2】在△ABC中,sinA∶sinB∶sinC=2∶3∶4,则∠ABC=(结果用反三角函数值表示).解:由已知及正弦定理,可得a∶b∶c=2∶3∶4,则a=2k,b…  相似文献   

19.
《高中生》2007,(24)
一、直接运用正弦定理或余弦定理求解的问题例1在△ABC中,已知角A,B,C的对应边分别为a,b,c,且满足4sin~2((B C)/2)-cos2A=7/2.(1)求角A的度数;(2)若a=3~(1/2),b c=3,且b相似文献   

20.
霍元山 《甘肃教育》2014,(12):93-93
正正弦定理、余弦定理的应用极为广泛,它将三角形的边与角有机地联系起来,从而为解三角形、判断三角形形状、证明三角形边角关系提供了重要的依据.在运用正余弦定理解题时,往往涉及许多数学思想.一、化归与转化思想化归与转化思想就是化未知为已知,化繁为简,化难为易.在解决三角形边角关系时经常用正弦定理、余弦定理进行边角关系的转化,进而化难为易.例1在△ABC中,角A、B、C所对的边的长分别是a、b、c,求证:a2-b2c2=sin(A-B)sinC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号