首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
The aim of this study was to investigate the effects of target distance on temporal and impact force parameters that are important performance factors in taekwondo kicks. Forty-nine taekwondo athletes (age = 24.5 ± 5.9 years; mass = 79.9 ± 10.8 kg) were recruited: 13 male experts, 21 male novices, 8 female experts, and 6 female novices. Impact force, reaction time, and execution time were computed. Three-way repeated measure ANOVAs revealed significant ‘distance’ effect on impact force, reaction time, and execution time (p = 0.001). Comparisons between distance conditions revealed that taekwondo athletes kicked with higher impact force from short distance (17.6 ± 7.5 N/kg) than from long distance (13.1 ± 5.7 N/kg) (p < 0.001), had lower reaction time from short distance (498 ± 90 ms) and normal distance (521 ± 111 ms) than from long distance (602 ± 121 ms) (p < 0.001), and had lower execution time from short distance (261 ± 69 ms/m) than from normal distance (306 ± 105 ms/m) or from long distance (350 ± 106 ms/m) (p = 0.003 and p < 0.001, respectively). In conclusion, target distance affected the kick performance; as distance increases, impact force decreased and reaction time increased. Therefore, when reaction to a simple visual stimulus is needed, kicking from a long distance is not recommended, as longer time is required to respond.  相似文献   

8.
Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an average of 1.83% (SD = 0.96; p < .05). This improvement was inversely related to an increase in maximal voluntary contraction torque (r = -.89, p < .05) and poorly correlated with changes in the contractile kinetics of the quadriceps muscle (r range from .36 to -.46). These findings suggest that sprint performance is poorly predicted by muscle intrinsic properties and that a neural adaptation appears to explain most of the observed functional adaptations.  相似文献   

9.
10.
11.
《Journal of sports sciences》2017,35(13):1310-1325
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号