首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The present work demonstrates the use of a dielectrophoretic lab-on-a-chip device in effectively separating different cancer cells of epithelial origin for application in circulating tumor cell (CTC) identification. This study uses dielectrophoresis (DEP) to distinguish and separate MCF-7 human breast cancer cells from HCT-116 colorectal cancer cells. The DEP responses for each cell type were measured against AC electrical frequency changes in solutions of varying conductivities. Increasing the conductivity of the suspension directly correlated with an increasing frequency value for the first cross-over (no DEP force) point in the DEP spectra. Differences in the cross-over frequency for each cell type were leveraged to determine a frequency at which the two types of cell could be separated through DEP forces. Under a particular medium conductivity, different types of cells could have different DEP behaviors in a very narrow AC frequency band, demonstrating a high specificity of DEP. Using a microfluidic DEP sorter with optically transparent electrodes, MCF-7 and HCT-116 cells were successfully separated from each other under a 3.2 MHz frequency in a 0.1X PBS solution. Further experiments were conducted to characterize the separation efficiency (enrichment factor) by changing experimental parameters (AC frequency, voltage, and flow rate). This work has shown the high specificity of the described DEP cell sorter for distinguishing cells with similar characteristics for potential diagnostic applications through CTC enrichment.  相似文献   

2.
Dielectric particles flowing through a microfluidic channel over a set of coplanar electrodes can be simultaneously capacitively detected and dielectrophoretically (DEP) actuated when the high (1.45 GHz) and low (100 kHz–20 MHz) frequency electromagnetic fields are concurrently applied through the same set of electrodes. Assuming a simple model in which the only forces acting upon the particles are apparent gravity, hydrodynamic lift, DEP force, and fluid drag, actuated particle trajectories can be obtained as numerical solutions of the equations of motion. Numerically calculated changes of particle elevations resulting from the actuation simulated in this way agree with the corresponding elevation changes estimated from the electronic signatures generated by the experimentally actuated particles. This verifies the model and confirms the correlation between the DEP force and the electronic signature profile. It follows that the electronic signatures can be used to quantify the actuation that the dielectric particle experiences as it traverses the electrode region. Using this principle, particles with different dielectric properties can be effectively identified based exclusively on their signature profile. This approach was used to differentiate viable from non-viable yeast cells (Saccharomyces cerevisiae).  相似文献   

3.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

4.
In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells.  相似文献   

5.
Assessment of the microbial safety of water resources is among the most critical issues in global water safety. As the current detection methods have limitations such as high cost and long process time, new detection techniques have transpired among which microfluidics is the most attractive alternative. Here, we show a novel hybrid dielectrophoretic (DEP) system to separate and detect two common waterborne pathogens, Escherichia coli (E. coli), a bacterium, and Cryptosporidium parvum (C. parvum), a protozoan parasite, from water. The hybrid DEP system integrates a chemical surface coating with a microfluidic device containing inter-digitated microelectrodes to impart positive dielectrophoresis for enhanced trapping of the cells. Trimethoxy(3,3,3-trifluoropropyl) silane, (3-aminopropyl)triethoxysilane, and polydiallyl dimethyl ammonium chloride (p-DADMAC) were used as surface coatings. Static cell adhesion tests showed that among these coatings, the p-DADMAC-coated glass surface provided the most effective cell adhesion for both the pathogens. This was attributed to the positively charged p-DADMAC-coated surface interacting electrostatically with the negatively charged cells suspended in water leading to increased cell trapping efficiency. The trapping efficiency of E. coli and C. parvum increased from 29.0% and 61.3% in an uncoated DEP system to 51.9% and 82.2% in the hybrid DEP system, respectively. The hybrid system improved the cell trapping by encouraging the formation of cell pearl-chaining. The increment in trapping efficiency in the hybrid DEP system was achieved at an optimal frequency of 1 MHz and voltage of 2.5 Vpp for C. parvum and 2 Vpp for E. coli, the latter is lower than 2.5 Vpp and 7 Vpp, respectively, utilized for obtaining similar efficiency in an uncoated DEP system.  相似文献   

6.
7.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

8.
The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future.  相似文献   

9.
The instrument described here is an all-electronic dielectrophoresis (DEP) cytometer sensitive to changes in polarizability of single cells. The important novel feature of this work is the differential electrode array that allows independent detection and actuation of single cells within a short section ( ~ 300?μm) of the microfluidic channel. DEP actuation modifies the altitude of the cells flowing between two altitude detection sites in proportion to cell polarizability; changes in altitude smaller than 0.25 μm can be detected electronically. Analysis of individual experimental signatures allows us to make a simple connection between the Clausius-Mossotti factor (CMF) and the amount of vertical cell deflection during actuation. This results in an all-electronic, label-free differential detector that monitors changes in physiological properties of the living cells and can be fully automated and miniaturized in order to be used in various online and offline probes and point-of-care medical applications. High sensitivity of the DEP cytometer facilitates observations of delicate changes in cell polarization that occur at the onset of apoptosis. We illustrate the application of this concept on a population of Chinese hamster ovary (CHO) cells that were followed in their rapid transition from a healthy viable to an early apoptotic state. DEP cytometer viability estimates closely match an Annexin V assay (an early apoptosis marker) on the same population of cells.  相似文献   

10.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

11.
Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.  相似文献   

12.
The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm−1 and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii.  相似文献   

13.
A biochip system imitates the oviduct of mammals with a microfluidic channel to achieve fertilization in vitro of imprinting-control-region (ICR) mice. We apply a method to manipulate and to position the oocyte and the sperm of ICR mice at the same time in our microfluidic channel with a positive dielectrophoretic (DEP) force. The positive dielectrophoretic response of the oocyte and sperm was exhibited under applied bias conditions AC 10 Vpp waveform, 1 MHz, 10 min. With this method, the concentration of sperm in the vicinity of the oocyte was increased and enhanced the probability of natural fertilization. We used commercial numerical software (CFDRC-ACE+) to simulate the square of the electric field and analyzed the location at which the oocyte and sperm are trapped. The microfluidic devices were designed and fabricated with poly(dimethylsiloxane). The results of our experiments indicate that a positive DEP served to drive the position of the oocyte and the sperm to natural fertilization (average rate of fertilization 51.58%) in our microchannel structures at insemination concentration 1.5 × 106 sperm ml−1. Embryos were cultured to two cells after 24 h and four cells after 48 h.  相似文献   

14.
Dielectrophoresis (DEP) has been shown to have significant potential for the characterization of cells and could become an efficient tool for rapid identification and assessment of microorganisms. The present work is focused on the trapping, characterization, and separation of two species of Cryptosporidium (C. parvum and C. muris) and Giardia lambia (G. lambia) using a microfluidic experimental setup. Cryptosporidium oocysts, which are 2-4 μm in size and nearly spherical in shape, are used for the preliminary stage of prototype development and testing. G. lambia cysts are 8–12 μm in size. In order to facilitate effective trapping, simulations were performed to study the effects of buffer conductivity and applied voltage on the flow and cell transport inside the DEP chip. Microscopic experiments were performed using the fabricated device and the real part of Clausius—Mossotti factor of the cells was estimated from critical voltages for particle trapping at the electrodes under steady fluid flow. The dielectric properties of the cell compartments (cytoplasm and membrane) were calculated based on a single shell model of the cells. The separation of C. muris and G. lambia is achieved successfully at a frequency of 10 MHz and a voltage of 3 Vpp (peak to peak voltage).  相似文献   

15.
We present a method to discriminate normal oocytes in an optoelectrofluidic platform based on the optically induced positive dielectrophoresis (DEP) for in vitro fertilization. By combining the gravity with a pulling-up DEP force that is induced by dynamic image projected from a liquid crystal display, the discrimination performance could be enhanced due to the reduction in friction force acting on the oocytes that are relatively large and heavy cells being affected by the gravity field. The voltage condition of 10 V bias at 1 MHz was applied for moving normal oocytes. The increased difference of moving velocity between normal and starved abnormal oocytes allows us to discriminate the normal ones spontaneously under the moving image pattern. This approach can be useful to develop an automatic and interactive selection tool of fertilizable oocytes.  相似文献   

16.
Current microfluidic techniques for isolating circulating tumor cells (CTCs) from cancer patient blood are limited by low capture purity, and dielectrophoresis (DEP) has the potential to complement existing immunocapture techniques to improve capture performance. We present a hybrid DEP and immunocapture Hele-Shaw flow cell to characterize DEP''s effects on immunocapture of pancreatic cancer cells (Capan-1, PANC-1, and BxPC-3) and peripheral blood mononuclear cells (PBMCs) with an anti-EpCAM (epithelial cell adhesion molecule) antibody. By carefully specifying the applied electric field frequency, we demonstrate that pancreatic cancer cells are attracted to immunocapture surfaces by positive DEP whereas PBMCs are repelled by negative DEP. Using an exponential capture model to interpret our capture data, we show that immunocapture performance is dependent on the applied DEP force sign and magnitude, cell surface EpCAM expression level, and shear stress experienced by cells flowing in the capture device. Our work suggests that DEP can not only repel contaminating blood cells but also enhance capture of cancer cell populations that are less likely to be captured by traditional immunocapture methods. This combination of DEP and immunocapture techniques to potentially increase CTC capture purity can facilitate subsequent biological analyses of captured CTCs and research on cancer metastasis and drug therapies.  相似文献   

17.
One of the main uses of adenosine triphosphate (ATP) within mammalian cells is powering the Na+/K+ ATPase pumps used to maintain ion concentrations within the cell. Since ion concentrations determine the cytoplasm conductivity, ATP concentration is expected to play a key role in controlling the cytoplasm conductivity. The two major ATP production pathways within cells are via glycolysis within the cytoplasm and via the electron transport chain within the mitochondria. In this work, a differential detector combined with dielectrophoretic (DEP) translation in a microfluidic channel was employed to observe single cell changes in the cytoplasm conductivity. The DEP response was made sensitive to changes in cytoplasm conductivity by measuring DEP response versus media conductivity and using double shell models to choose appropriate frequencies and media conductivity. Dielectric response of Chinese hamster ovary (CHO) cells was monitored following inhibition of the mitochondria ATP production by treatment with oligomycin. We show that in CHO cells following exposure to oligomycin (8 μg/ml) the cytoplasm conductivity drops, with the majority of the change occurring within 50 min. This work demonstrates that dielectric effects due to changes in ATP production can be observed at the single cell level.  相似文献   

18.
This Special Topic section is on dielectrophoresis, a growing area of widespread interest and relevance to the microfluidics and nanofluidics community.There was a time when the arrival of a telegram from the local post office would foreshadow a step-function change in one’s equilibrium. An internet service provider can now deliver the same effect, as illustrated by an unexpected e-mail from Leslie Yeo inquiring if I would “be interested in guest editing a special issue of Biomicrofluidics on recent advances in dielectrophoresis (DEP).” Flattery directed towards vanity can produce interesting results—which I hope this special issue of Biomicrofluidics demonstrates. The rationale for this special issue is the belief of the journal’s Editors (Dr. Chia Chang and Dr. Leslie Yeo) that dielectrophoresis is a growing area of widespread interest and relevance to the microfluidics and nanofluidics community. Papers, both fundamental and applied, were solicited from the leaders working across this broad interdisciplinary area of research. I was delighted by the positive responses of those whose invited contributions appear in this special issue—efforts certainly not motivated by vanity but through enthusiasm for the subject. Some of those invited to contribute were unable to do so because of other demands on their time. Ongoing advances being made in DEP, especially in its various applications, will surely merit another special issue in the future and hopefully include contributions from those unable to do so now.Two of the papers in this special issue address fundamental aspects of dielectrophoresis (DEP), namely the influences on DEP from electrical double-layers and from particle-particle interactions. Consideration of electrical double layers associated with charged particle surfaces is particularly important for nanoparticles because their effective polarizabilities, associated with field-induced dynamics of the counterions and co-ions in the double layer, can dominate over the intrinsic polarizability of the particle itself. This can influence, for example, to what extent the observation of changes in the DEP crossover frequency (marking the transition between positive and negative DEP) can be relied upon in new immunoassays based on the DEP behavior of functionalized nanoparticles. By considering the electrodynamics of double layers, Basuray et al.1 propose a theory to predict how the DEP crossover frequency will vary as a function of particle size and the ionic strength of the suspending electrolyte. In their paper, Sancho et al.2 derive a theoretical model to describe how particle-particle interactions (e.g., “pearl-chaining”) influence the DEP crossover frequency value. This model also describes well the changes in electrorotation and a newly observed precession effect as particles approach each other under the influence of a rotating field.DEP at the nanoscale is also addressed in contributions from the groups of Ralph Hölzel, Junya Suehiro, and Karan Kaler. Thus, Henning et al.3 describe a new method, based on the measurement of capacitance changes between planar microelectrodes, for the automatic acquisition of the DEP properties of nanoparticles without the need for labeling protocols or visual observations. Suehiro4 describes how DEP can be employed as a bottom-up approach for fabricating nanomaterial-based devices such as a carbon nanotube gas sensor and a ZnO nanowire photosensor. Kaler et al.5 describe how the DEP manipulation of miniscule amounts of polar aqueous samples, a method known as liquid-DEP, can be used for on-chip bioassays, such as nucleic acid analysis, and through parallel sample processing offer the potential for conducting automated multiplexed assays. The use of DEP to selectively trap and separate cells has been investigated over many years, and contributions from the groups of Hywel Morgan, Ana Valero, Masau Washizu, and Gerard Markx describe the latest advances and applications. Thomas et al.6 describe a new automated DEP cell trap design for the isolation, concentration, separation, and recovery of human osteoblast-like cells from a heterogeneous population. Recovery of small populations of human osteoblast-like cells with a purity of 100% is demonstrated. A cell-sorting device, based on the opposition of DEP forces that discriminates between cell types according to such properties as their membrane permittivity and cytoplasm conductivity, is described by Valeroet al.7 The versatility of the device is demonstrated by synchronizing a yeast cell culture at a particular phase of the cell cycle. Gel et al.8 describe a DEP-assisted cell trapping method for fusing pairs of cells in an array of micro-orifices. This method produces not only a high yield of viable cell fusants, but also allows for subsequent study of postfusion cell development. Zhu et al.9 describe a DEP-based microfluidic separation system in which dead and active cells can be collected from a given cell suspension, whilst at the same time eluting dormant cells. In the second paper from Gerard Markx’s group, Zhu et al.10 demonstrate that the rate-limiting resuscitation of a colony of dormant bacteria is determined by the diffusion of a resuscitation-promoting factor into the colony interior. This study involved the artificial engineering of different sizes and shapes of bacterial aggregates using DEP forces. Finally, in my own contribution,11 I have attempted to summarize the growing output of DEP publications in terms of their contributions to the theory, technology, and applications of DEP.  相似文献   

19.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

20.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号