首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
车辆悬架对于车辆行驶时的平顺性和操控性都有直接影响,半主动悬架利用智能算法对悬架系统智能调节更能增加车辆在行驶时的平顺性。通过建立路面模型和悬架数学模型,分析了路面不平度函数和时域表达式。确定了悬架评价指标,然后通过建立误差动力学模型、切换面设计、模型确定三个步骤完成了悬架控制器的设计,最后针对汽车右前轮独立悬架系统使用Simulink可视化仿真软件等工具进行1/4悬架系统的仿真模拟分析,最终结合评价系统的三项指标得出仿真结果。通过算法设计与仿真分析,系统地分析了半主动悬架系统对汽车行驶状态的改善情况,为汽车半主动悬架的进一步发展提供资料和实验数据上的参考。  相似文献   

2.
This paper emphases on analyzing and investigating the mechanical behavior of electro-rheological fluid (ERF) semi-active damper. Theoretical model was developed to describe the relationship between electric field and the resistance force of ERF flowing through two parallel plane electrodes. In the model, the pressure drop along electrodes was supposed to consist of two parts: one related with viscosity and the other related with dynamic yield shear stress. The concept of yield stress influence factor was developed in  相似文献   

3.
为了获得更好的汽车平顺性,构建1/4汽车主动悬架模型,采用悬架动挠度、车身动位移、轮胎动载荷和轮胎垂直速度等4项指标进行近似衡量,提出基于改进萤火虫优化算法(FA)的汽车悬架PID控制,并与基于LQR控制、基于Fuzzy-PID控制下的汽车悬架平顺性进行对比。仿真结果显示,基于改进FA优化的PID控制的4项指标峰值均大幅降低,峰值最高下降36.1%,证明基于改进萤火虫优化算法的PID控制可提高汽车平顺性能。  相似文献   

4.
汽车磁流变半主动悬架的模糊控制   总被引:1,自引:0,他引:1  
为带有磁流变液智能阻尼器的半主动汽车悬架系统设计了一种模糊控制器:将半主动悬架相对位移的误差及误差变化率作为模糊控制器的输入,阻尼力作为其输出,利用磁流变液智能阻尼器的阻尼力随电流变化的特性使车身的振动降到最小。仿真实验给出了最优被动悬架和模糊控制智能半主动悬架在随机路面激励情况下的响应曲线,结果表明,磁流变半主动悬架系统采用模糊控制效果较理想,其车身垂直加速度等参数变化幅度也有所降低。  相似文献   

5.
On the basis of analyzing the system constitution of vehicle semi-active suspension,a 4-DOF(degree of freedom)dynamic model is established.A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty,nonlinearity and complexity of parameters for a vehicle suspension system.Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road,and the effects of time delay and changes of system parameters on the vehicle suspension system are researched.The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective,stable and reliable.  相似文献   

6.
~~under the sliding mode controller. It shows that the sliding mode controller yield almost perfect tracking to the reference model. It can be seen in Fig.6 that the acceleration of sprung mass under sliding mode controller is controlled within ?.7 m/s2. Fig.7 shows the robustness and stability of the sliding mode controller to the parameter variations of the system to be controlled, in this case, a relative decrease of 10 % in the sprung mass and a relative increase of 15 % in the stiffness o…  相似文献   

7.
A new sliding mode controller for semi-active suspension system with magnetorheological (MR) damper is presented in this paper. In the proposed sliding mode controller, a semi-active suspension based on the skyhook damper system is chosen as the reference model to be followed, and the control law is so determined that the asymptotically stable error dynamics occurs between the controlled state and the reference model state. Numerical simulations are carried out to study the performance of the new sliding mode controller. The results show that the proposed controller yields almost perfect tracking to the reference model and has a high robustness against model parameter uncertainties and disturbances.  相似文献   

8.
1 Introduction 1 Semi-active suspension is advantaged by good performance and low price over the passive suspension and active suspension [1]. The control strategy as the core of a control system is widely researched in practice. The simple dynamic model is often adopted in the typical process. However, the differences between the practical and physical models bring on more idealization and less practicability. On the other hand, the mechanical designer and the controls designer use different…  相似文献   

9.
根据汽车隔振基本原理,提出了悬架振动的混沌描述问题.采用汽车制动悬架隔振效率实验台获取了实验汽车前、后悬架的振动曲线,计算了系统参数如一阶固有频率和阻尼比,并计算了混沌参数如最小嵌入相空间维数和关联维,获得了汽车悬架的隔振性能、混沌参数与系统参数三者之间的对应关系.研究结果表明:对于吉普车型,可采用最小嵌入相空间维数Mmin评价前悬架隔振性能的变化,Mmin值越小,隔振性能趋差,对应于前悬架的刚度和阻尼值越小;对于不同车型,可采用关联维D2区分吉普车型或轿车型的悬架,吉普车型的D2值高于轿车型.  相似文献   

10.
1Introduction1Because the traditional suspension can hardly meet the demands for either ride comfort or handling stability when the performance of a vehicle’s light weight and high speed are emphasized,more attention has focused on the development of advanced active suspension and its control method has been researched extensively.The current method for solving the problem of active suspension control for a vehicle often deals with a quarter car or a half car model[1-4].But it is not enough t…  相似文献   

11.
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.  相似文献   

12.
The magnetorheological (MR) fluid damper-based semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds. In this paper, a novel modal controller using wavelet packet transform (WPT) is proposed for the vibration control of distributed structures. In the proposed control system, the WPT method is utilized to decompose the acceleration measurement and select the modes containing most of the WPT energy component as the dominant modes. Then, a modal controller is designed to control the dominant modes and the optimal active control force is solved. Finally, Clipped-optimal con- trol law is adopted to determine the voltage applied to each MR damper. A Kalman-filter observer, which estimates the full controlled modal states from local accelerometer feedbacks, is designed for rendering the controller to be more applicable to distributed structures with a large number of degrees of freedom. A numerical example of a stadium roof structure installed with MRF-04K damper is presented. The effectiveness of the controller is evaluated under both Tianjin and El Centro earthquake excitations. The superior performance and adaptability of the controller for versatile loading conditions are demonstrated through the comparison with traditional truncated modal controller.  相似文献   

13.
We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup tower is 181 m with a ground elevation of 47 m, which makes it a super flexible and wind-sensitive structure. Therefore, we should analyze the wind- resistant capacity of the system. We simulated applicable transverse fluctuating wind velocity field, developed a lead-rubber damper (LRD) for controlling wind-induced vibration of long-span transmission towers, deduced LRD calculation model parameter, and researched the best layout scheme and installation method of LRD. To calculate the wind-induced response of tower-line coupling system in seven layout schemes, we used the time history analysis method, and obtained the efficiencies of wind-induced vibration control. LRD deformation research proved that the damp of all LRDs was efficient under the designed wind velocity when they were laid along the edge of tower heads. We studied the controlling efficiency resulting fTom only applying stiffness to the tower polos where the dampers used to be laid under the designed wind velocity. The results show that the controlling efficiency was not ideal when the stiffness is increased on the poles only. Therefore, LRD should conlxibute to both the stiffness and damp of a structure to effectively reduce the dynamic response of a tower-line coupling system under strong winds. We also discussed the controlling efficiency of LRD under static winds. The results show that there was little difference between displacements derived by the finite clement time history method and those obtained by static wind method conducted by a design institute. This means the simulation on space relevant wind velocity field was accurate and reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号