首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等。证明如图1,记∠AOB=a,△AOB、△COD、△AOD和△BOC的面积分别为S_1、S_2、S_3和S_4,则由三角形面积公式,有  相似文献   

2.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

3.
题 已知O为△ABC的外心,AO或AO的延长线交BC于M,求证:BM:MC=sin2C:sin2B。 此即《首届全国数学奥林匹克命题比赛精选》中的一题,本刊1995年第6期给出了简证,其实还有更绝的证法如下: 证 作BE⊥AM于E,作CF⊥AM于F,显然∠AOC=2B,∠AOB=2C,OA=OB=OC=R,∵△BEM∽△CFM,∴BE/CF=BM/MC,sin2C/sin2B=((1/2)R~2sin∠AOB)/((1/2)R~2sin∠AOC)=S_△AOB/S_△AOC=BE/CF,  相似文献   

4.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

5.
<正>张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则sin(α+β)/PC=sinα/PB+sinβ/PA.证明因为S_(△PAB)=S_(△PAC)+S_(△PCB),所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.下面举例说明它的应用.例1如图2,已知BP:PQ:QC=3:2:1,AG:GC=4:3,则BE:EF:FG=___.  相似文献   

6.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

7.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

8.
一、用公式sin3α=3sinα-4sin3α简解题设中含"B=2A"的两道解三角形的高考题普通高中课程标准实验教科书《数学4·必修·A版》第138页的习题B组第1题是:证明:(1)sin3α=3sinα-4sin3α;(2)cos3α=4cos3α-3cosα.笔者发现运用上面的第一个公式"sin3α=3sinα-4sin3α"可以简解题设中含"B=2A"的解三角形问题.定理1:在△ABC中,若B=2A,则cos A=b/(2a),a(a+c)=  相似文献   

9.
我们知道:S_△=1/2ah,由此可得:同底的两个三角形的面积比等于这底上的高的比。这一命题可以推广如下: 有一条公共边的两个三角形的面积比等于这两个三角形的另一个顶点的连线被公共边所在的直线分成的两条线段的比。 即.已知:如图.AB的延长线交CD于点E 求证:S_ABC:S_ABD=CE:DE 证明:分别由点C、D向AE及其延长线作垂线CF、DG,FG为垂足,则有:S_△ABC:S_△ABD=CF:DG(1)△CEF∽△DEG(?)CF:DG=CE:DE(2)由(1),(2)得:S_△ABC:S_△ABD=CE:DE。 利用这一命题,可以较简捷地证明一些几何命题,请看以下几例: 例 1:在△ABC中任取一点O, AO、 BO、 CO与对边的交点分别是D、 E、 F,求证:  相似文献   

10.
大家知道,在△ABC中,若AD是∠A的平分线,则面BD/DC=AB/AC,若D为BC边上任意一点,由正弦定理,得在△ABC中,BD/AB=sinα/sinγ, 在△ACD中,DC/AC=sinβ/sin(180°-γ),两式相除得BD/DC=AB·sinα/AC·sinβ。  相似文献   

11.
题目:如图1,任意四边形ABCD被两条对角线分成四个三角形:△OAD、△OBC、△OAB、△OCD,它们的面积分别是S1、S2、S3、S4,则S1·S2=S3·S4.证明:设△OAD边AO上的高为h1,△OAB边OA上的高为h2,则  相似文献   

12.
文[1]中给出了二倍角三角形的一个性质及其应用,作为该文的补充,今给出n倍角三角形的一个性质及其相应的一些推论。下面用A、B、C表示△ABC的三内角,以a、b、c分别表示它们的对边 定理 在△ABC中,若A=nB (n∈N),则 a~2=b~2 bc·sin(n-1)B/sinB 证明 在△ABC中,因A=nB,故C=180°-(n 1)B ∴sin~2B sinC·sin(n-1)B=sin~2B sin(n 1)B·sin(n-1)B =1/2(1-cos2B)-1/2(cos2nB-cos2B)  相似文献   

13.
例1 设△ABC为锐角三角形,外接圆圆心为O,半径为R,AO交△BOC所在圆于另一点A′,BO交△COA所在圆于另一点B′,CO交△AOB所在圆于另一点C′.证明: OA′·0B′·OC′≥8R~3并指出在什么情况下等号成立?  相似文献   

14.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

15.
本文借助于向量的数量积给出平面任意四边形的一组新面积公式,并举例介绍其应用.引理1对平面任意四边形ABCD,有SABCD=12AC·BD·sinα(其中,α是对角线AC、BD所成的角)图1证明:(1)如图1,若四边形ABCD是凸四边形,则SABCD=S△PAB S△PBC S△PCD S△PDA=12PA·PB·sin∠APB 12PB·  相似文献   

16.
[例1]已知两数3a和27a,那么这两数的比例中项是.[错解]9a.[剖析]此题错解的原因是把“求两个数的比例中项”与“求两条线段的比例中项”相混淆.两个数的比例中项应有正、负之分,而线段的比例中项只能为正.[正解]设这两个数的比例中项为x,则x2=3a·27a=81a2得x=±8a正解:±8a.[例2]如图,梯形ABCD中,AD//BC,对角线AC、BD相交于O,试问△AOB和△DOC是否相似?[错解]相似,理由如下:∵AD//BC∴AOOC=DBOO又∵∠AOB=∠COD∴△AOB△DOC[剖析]在比例线段AOOC=DBOO中,AO与DO夹的是∠AOD,BO与CO夹的是∠BOC,再由∠AOB=∠COD…  相似文献   

17.
本文将三角形求积公式 S=1/2absinC 在四面体中推广,得到并证明了定理:若四面体中过同一顶点的三个侧面面积分别为 S_1、S_2、S_3且以此顶点为角顶的三面角为α则此四面体体积为V=1/3(2S_1S_2S_3sinα)1/2  相似文献   

18.
例1如图1,设O是等边三角形ABC内一点,∠AOB= 115°,∠AOC=125°,则以OA、OB、OC为边所构成的三角形的各内角的度数各是多少?解如图2,把△AOB绕点A逆时针旋转60°得到△ADC,则AD=AO,∠2=∠1.所以∠2+∠3=∠1+∠3 =∠BAC=60°.  相似文献   

19.
在三角中,三角函数连乘积的证明、化简是一个难点。例如,“求证sin20°·sin40°·sin60°·sin80°=3/(16)”,一般需几次应用积化和差公式才能证得。仔细观察求证式,左端除了60°这个特殊角以外,其余三个角为20°、40°、80°,有一定的规律。由此我想起一个三角恒等式: sinα·sin(60°-α)·sin(60° α) =1/4sin3α(1) 如果在上题中令α=20°,则40°=60°-α,80°=60° α,利用(1)式来解决就简单了。证:左=(3~(1/2))/2sin20°sin(60°-20°) ·sin(60° 20°) =(3~(1/2))/2·(1/4)sin60°=3/(16)=右。仿照(1)式,我们还可以证明  相似文献   

20.
平面几何中,有一个叫做海伦——秦九韶的三角形面积公式 S_△=(p(p-a)(p-b)(p-c))~(1/2), 其中a、b、c是三角形三边的长,p是周长的一半。有趣的是,在立体几何中,也有一个与之相类似的四面体体积公式 V四面体=1/3abc··(sinωsin(ω-α)sin(ω-β)sin(ω-γ))~(1/2),①其中a、b、c是共顶点的三条棱的长,α、β、γ是相邻棱组成的面角,ω是这三个面角和的一半。公式①的证明: 设四面体M—ABC中,MA=a,MB=b,MC=c,∠AMB=α,∠BMC=β,∠CMA=γ。作BO⊥平面MAC,垂足为O。作OA′⊥MA,垂足为A′。作OC′⊥MC,垂足为C′。连结BA′、BC′,则BA′⊥MA,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号