共查询到20条相似文献,搜索用时 0 毫秒
1.
“构造法”是一种重要而灵活的思维方式,它没有固定的模式,需要有敏锐的观察;丰富的联想、灵活的构思和创造性的思维等能力,故有一定的难度.应用构造法解题关键有两点:(1)要有明确的方向,即为什么目的而构造;(2)必须弄清条件的本质特点,必须进行构造,从而达到解题的目的.本文通过具体的实例来说明构造法在解题中的应用.1构造函数式构造函数式是指构造一个函数表达式,利用函数的性质进行解题.例1设ai、bi∈R(i=1,2,3,L,n),求证:(a1 a2 L an)(b1 b2 L bn)222222≥(a1b1 a2b2 L anbn)2(柯西不等式).分析从不等式的形式来看与一元二次不等式中… 相似文献
2.
武晓敏 《河北理科教学研究》2010,(1):51-53
1 构造函数来研究方程、不等式例1 设a,b,c为△ABC的三条边,求证:a^2+b^2+c^2〈2(ab+bc+ca).解析:构造函数f(x)=x^2-2(b+c)x+(b—c)^2. 相似文献
3.
马登福 《青海师范大学民族师范学院学报》2003,14(2):61-63
构造法是一种解题方法。通过构造辅助元素来寻求条件与结论间的关系,揭示问题的背景,显现问题的实质,这种方法具有构思巧妙,结构严谨,灵活多变的特点,有利于培养学生创造性的思维能力。本通过构造等价命题,构造函数,构造几何模型.构造方程来说明应用“构造法”解题的基本思想。 相似文献
4.
5.
作为数学思想方法之一,构造思想已经渗透到数学的各个分支中.本文从数学方法论的角度,通过分析不等式的证明思路,对其中所蕴涵的构造思想进行了分析和探讨。 相似文献
6.
7.
8.
9.
10.
11.
数学的学习不仅是基本知识的学习,更是思维的训练.而构造法能够根据数学题目的特征,构造出熟知的数学模型,从而让解题思维得以转化,完成问题的解决.下面将一些问题进行归类,分别谈谈如何巧妙运用构造法.一、含有参数范围问题的构造解法 相似文献
12.
构造法在数学中占有十分重要的地位,在数学解题中亦有着十分重要的作用.许多数学问题的求解,当我们把具体的对象构造出来以后,问题也就完全解决了. 相似文献
13.
数学方法是对数学知识在更高层次上的抽象和概括.构造法是以已知条件为原料,以所求答案为方向,构造出一种人们更为熟悉的数学形式,把原本"山重水复疑无路"的局面变成"柳暗花明又一村"的景象,使得问题在新的形式下得到快捷的解决——用他山之石予以攻玉.构造法的目的是为了化繁为简、化未知为已知、化不熟悉为熟悉.这也是解答数学问题的共性之所在.通过巧妙地使用构造法解答数学问题,能够激发学生的发散思维,对培养学生的多元化思维和创新精神大有裨益. 相似文献
15.
16.
17.
18.
杨青亭 《中学生数理化(高中版)》2011,(11):14-15
构造函数,利用其单调性;构造方程,借助于方程根的相关理论;构造有向线段定比分点;构造圆锥曲线,借助解析几何中的相关方法.将不等式转移到一个熟悉的环境里来研究,赋予不等式实际意义,就使得不等式有了生命,变得鲜活起来,这样不仅可以培养学生的创新思维,激发其学习兴趣;还体现了新程标准的要求. 相似文献
19.