首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

2.
Wielandt-Hoffman定理的推广   总被引:1,自引:0,他引:1  
本文推广了Wielandt-Hoffman定理,得到了如下的结果:设A,B,C均为n×n Hermite矩阵,它们的特征根(从大到小依次排列)分别为α_iβ_iγ_i,(i=1,2,…,n),(i)若B=C-A,则sum i=1 to n (β_i~2)≥sum i=1 to n(γ_i-α_i)~2;(ii)若B=C+A,则sum i=1 to n (β_i~2)≤sum i=1 to n (γ_i+α_i)~2。  相似文献   

3.
命题设χ_i,a_i∈R~ (i=,2,3……,n),且sum from i=1 to n(χ_i)=(定值),则当χ_i=m(a_i)~(1/2)/sum from i=1 to n(i=1,2,……,n)时,和sum from i=1 to n(a_i/χ_i)取最小值,其最小值为1/m((sum from i=1 to n(a_i~(1/2)))~2  相似文献   

4.
1.证明,八个相邻正整数乘积的四次方根必非整数,而它的整数部分是 x~2+7x+6,这里 x 是这些相邻整数的起始者.2.设 k 和 l 为给定的实数,对任意两个实数 a,b,定义运算 a_ob=ab+k(a+b)+l.试问这种运算满足结合律(a·b)·c=a·(b·c)的充要条件是什么?3.设 o<λ_1≤λ_2≤…≤λ_n,a_i≥0(i=1,2,…,n).证明不等式sum from i=1 to n λ_ja_i sum from i=1 to n a_i/λ_i≤1/4((λ_1/λ_n)~(1/2)+(λ_n/λ_1)~(1/2))~2(sum from i=i to n a_i)~2.4.作一凸闭曲线,它并非圆,但它的周长等于πD,这里 D 是它的直径,即它所围成的闭区域内两点间的最大距离.  相似文献   

5.
在柯西不等式:(sum from i=1 to n a_i~2)·(sum from i=1 to n b_i~2)≥(sum from i=1 to n a_ib_i)~2(其中a_i,b_i∈R,i=1,2,…,n)  相似文献   

6.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

7.
设∑_A 是 E~n 中的 n 维单形:e_1,e_2…e_(n+1)分别是∑_A 的 n+1个界面上的单位法向量,令Di=det(e_1,e_2,…ei-1,e_(i+1)…e_(n+1)),a_1=arcsin|D|,本文获得了下列不等式sum from i=1 to n+1 λ_1sin~2a_1≤(λ1(1/n sum from i=1 to n+1 1/λ_1)~n这里λ_1∈R~+,i=1,2,…n+1  相似文献   

8.
第四届(1989年)全国中学生数学冬令营试题的第二题是: 设x_1,x_2,…,x_n都是正数(n≥2),且sum from i=1 to n x_i=1,求证: 二/X。 sum from i=1 to n x_i/1-x_i~(1/2)≥sum from i=1 to n x_i~(1/2)/n-1~(1/2).(1) 本文对这道试题作出如下推广: 设x_1,x_2,…,x_n都是正数(n≥2),且sum from i=1 to n x_i=A>0,若α≥1,β>0,0<γ<1,  相似文献   

9.
设∑A是E~n中的n维单形:e_1,e_2,…,e_(n+1)分别是∑A的n+1个界面上的单位法向量,令D_1=det(e_1,e_2,…,e_(1-1),e_(1+1),…,e_(n+1)),a_1=arc sin |D_1|,则有:sum from i=1 to n+1 (λ_1sin~2α_1)≤(multiply from i=1 to n+1 (λ_1))(1/n sum from i=1 to n+1 1/(λ_1))~n这里λ_1∈R~+,i=1,2,…,n+1  相似文献   

10.
Holder不等式在不等式理论与应用中有其特殊的效用.本文将着重介绍Holder不不等式的两个推论及它们的应用. Holder不等式的完整形式应是以下定理:若α_i>0,b_i>0(i=1,2,…,n),p,q满足1/p 1/q=1,则(1)若1相似文献   

11.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

12.
设a_1,a_2,…,a_n和b_1,b_2,…,b_n为两组实数,则有((sum from i=1 to n(a_ib_i))~2≤(sum from i=1 to n(a_i~2))(sum from i=1 to n(b_i~2)))。式中等号当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时成立。特别地,当b_1=b_2=…=b_n=1时,有 a_1~2 a_2~2 … a_n~2≥1/n(a_1 a_2 … a_n)~2。 以上第一个不等式称为柯西不等式,其证明方法很多,在此不再赘述。  相似文献   

13.
再谈一类分式不等式的证明   总被引:1,自引:0,他引:1  
文[1][2][3]分别从不同角度介绍了一类分式不等式的证明,但显得技巧性强,难以掌握,本文将从此类不等式的题源出发,证明之。 先看以下命题: 对a_i>0,b_i>0,(i=1,2,3,…,n)有 (sum from i=1 to n(a_i~2/b_i))≥(sum from i=1 to n(a_i))~2/(sum from i=1 to n(b_i)) (*)证明∵a_i>0,b_i>0(i=1,2,3,…,  相似文献   

14.
著名的柯西不等式为 (sum from i=1 to n (a_i~2))(sum from i=1 to n (b_i~2))≥(sum from i=1 to n (a_ib_i))~2. (1) 关于(1)式,一般参考书上是采用构造函数,利用判别式间接进行证明的。本文首先给出(1)式的一个直接的简捷证明,然后利用算术-几何平均值不等式给出(1)式的指数推广。  相似文献   

15.
第二十九届国际数学奥林匹克竞赛有一道非常难的预选题: 命题 设a_i>0,β_i>0(1≤n,n>1),且sum from i=1 to n a_i=sum from i=1 to n β_i=π. 证明:sum from i=1 to n cosβ_i/sina_i≤sum from i=1 to n ctga_i (1) (蒙古提供)  相似文献   

16.
本刊[1]文中将不等式 1/n sum from i=1 to n a_i~n≥multiply from i=1 to n a_i(a_i∈R~+,i=1,2,…,n) 作了如下隔离 1/n sum from i=1 to n a_i~n≥(1/n sum from i=1 to n a_i)~n≥multiply from i=1 to n a_i (1) 但美中不足的是其证明过程中运用了二阶导数和凸函数的有关知识,不宜中学生阅读和接受。为此,本文给出(1)式的一个简捷的初等证明。证明:由算术—几何平均  相似文献   

17.
胡道煊同志在文[1]中曾绐出了如下的不等式:sum from i=1 to n((a_i~m)/(b_i))≥n~(2-m)·((sum from i=1 to n(a_i))~m/sum from i=1 to n(b_3))。(1)其中a_i、b_i>0,(i=1,2,…,n),且|m|≥1。 此处我们说(1)是一个不恒成立的不等式。例如取n=2,b_1=a_1,b_2=a_2,m=3/2,则有  相似文献   

18.
由初等代数学,我们知道下面恒等式是成立的:(sum from n to i=1 a_i~2)(sum from n to i=1 b_i~2)-(sum from n to i=1 a_ib_i)=sum from to (i,f)(a_ib_f-a_fb_i)~Z……(1)此恒等式,通常称为拉格朗日(Lagrange)恒等式。由初等代数学也容易证明下面不等式是成立的:  相似文献   

19.
若a∈R_ ,则有a≥2-1/a (*),等号当且仅当a=1时成立. 不等式(*)不仅结构简单,而且利用它还可以简捷地证明一些较难的不等式.下面举几例说明. 例1 设a_i,b_i∈R_ ,且sum from i=1 to n(a_i)=sum from i=1 to n(b_i),求证sum from i=1 to n(a_i~z)/(a_i b_i)≥1/2 sum from i=1 to n(a_i).(1991年亚太地区数学竞赛题)  相似文献   

20.
作为一名合格的中学教师,不仅要做到善于解题,而且也要做到善于编题.本文以Cauchy不等式(sum from i=1 to n(x_iy_i))~2≤(sum from i=1 to n(x_i~2))×(sum from i=1 to n(y_i~2)) (1)为基础,结合中学数学知识编拟了一些习题,对如何编写中学数学题做了一些探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号