首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

2.
如何求 tan 15°?学生时常为这个问题所困扰,笔者经研究发现:利用特殊角(30°,45°和60°)之间的关系巧妙地构造几何图形,不难找到一些简捷、精当的方法,下面以含30°的直角三角形为基本图形,商榷几种求 tan 15°值的方法.基本图形:如图1,在Rt△ABC 中,∠C=90°,∠ABC=30°,AC=1.基本结论:AC:BC:AB=1:3~(1/2):2,即 AB=2,BC=3~(1/2),∠A=60°.1 以30°角为顶角,构造等腰三角形方法1:如图2,延长 BC 至 D 点,使 BD=AB,连结 AD.由作法可知,BD=AB=2,∠CAD=15°.所以CD=BD-BC=2-3~(1/2).  相似文献   

3.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

4.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

5.
构造法是解题的一种工具,也是一种重要的数学思想方法,课本中30°、45°、60°的正切值就是通过构造特殊的直角三角形而求得,tan15°同样可构造合适的图形求出,而且有多条构造途径,下面介绍几例:途径1:从含30°角的直角三角形中直接分出一个15°角如图1,在Rt△ABC中,∠C=90°,∠A=30°,设BC=1,则AB=2,由勾股定理,得AC=#3.作∠CBD=15°交AC于D,则∠DBA=45°,再作DE⊥AB于E,则DE=BE.设DE=BE=k,则AD=2k,AE=%3k,由AB=2得#3k+k=2.∴k=#3-1.故CD=AC-AD=#3-2k=#3-2(#3-1)=2-#3.∴tan15°=tan∠DBC=CBDC=2-#13=2-#3.(还可作∠…  相似文献   

6.
掌握了解直角三角形的知识后,我们手中又多了一个解题工具.但是解题中经常遇到的三角形并不是直角三角形,这时怎么办呢?遇到这种情况,不妨根据题意,结合图形,遇“斜”化“直”,即会柳暗花明.现举几例说明.例1(2002年重庆市中考试题)如图1,在△ABC中,∠A=30°,tanB=13,BC=10√,则AB的长为.分析在△ABC中,由条件∠A=30°,tanB=13,可想到遇“斜”化“直”的方法.即过点C作CD⊥AB于D.于是在Rt△BDC中,CDDB=13.设CD=x,则DB=3x(x>0).由勾股定理得x2+(3x)2=(10√)2,即x=1(负根舍去).在Rt△ADC中,∠A=30°,所以AD=3√·CD=3√.因此…  相似文献   

7.
一、填空 :(每空 2分 ,共 3 0分 )1.16的平方根是 ,当x时 ,分式 |x|-2x2 -5x+ 6 的值为零 .2 .当x时 ,分式 x+ 12x -5有意义 ;当x时 ,式子 3x+ 2 有意义 .3 .若解分式方程 2xx + 4 =ax + 4 时产生增根 ,则a=.4.在图形 :线段、角、任意三角形、等腰三角形、直角三角形中 ,有个轴对称图形 .5.如图 , ABC中 ,∠ACB =90°,CD是高 ,AB=4cm ,∠A=3 0°,则BD =cm .6 .如图 ,等腰 ABC的一腰AB的垂直平分线AC于D ,垂足为E ,AB =10cm , BDC的周长为 16cm ,则底边BC =cm .7.如图 ,四边形ABCD中 ,AB =12cm ,BC =3cm ,CD =4cm ,∠C =9…  相似文献   

8.
<正>本文结合实例,探讨如何构造直角三角形解题.一、计算与求值1.计算线段的长度例1如图1,△ABC中,∠A=15°,∠B=15°,AB=2,求边长AC,BC的长度.分析与思考过点A作BC边上的高AD.构造出直角三角形,转化为对直角三角形的求解.为方便计算,设AC=2x,那么BC=2x,AD=x,DC=3(1/2)x.由勾股定理,得AD(1/2)x.由勾股定理,得AD2+DB2+DB2=AB2=AB2,即有x2,即有x2+(2x+32+(2x+3(1/2)x)(1/2)x)2=22=22,解此方程求出x的值,那么△ABC的边长即可求出.  相似文献   

9.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

10.
勾股定理是直角三角形的一个重要性质, 与其逆定理相结合揭示了直角三角形三边之间数与形的对应关系,体现了数学的数形结合思想.下面就其应用举例如下.一、利用勾股定理进行计算例1 已知:Rt△ABC 中,∠C=90°,AD、BE分别为BC、AC边的中线,AD= 2 10~(1/2),BE=5.求AB的长.分析:因为∠C=90°,AB是Rt△ABC的斜  相似文献   

11.
数学课本中许多例题、习题都具有典型性,不仅知识的连贯性强,而且内涵丰富。在复习时,为了帮助学生深刻理解知识,体现综合应用中的综合性,可适当进行一些一题多变练习。现以九年义务教育三年制初级中学《几何》第二册的第68页例2为例进行一题多变,供参考。  题目:如图,已知:在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求三角形各角的度数。解:∵AB=AC,BD=BC=AD,DCBA∴∠A=∠ABD,∠BDC=∠C=∠ABC。设∠A=x,则∠BDC=2x,∠C=∠ABC=2x。∴x 2x 2x=180°,∴x=36°,∠ABC=∠C=72°。这是一道内涵丰富的好题,由边的相等关系可…  相似文献   

12.
刘金江 《初中生》2003,(27):24-27
在解直角三角形时,最常用的数学思想是数形结合,即先根据题意画出图形,再借助于图形的直观,分析有关边角关系,最后计算.对于斜三角形和联系实际的问题,转化思想和方程思想在解题中起着重要的作用.一、转化思想.解数学题时,常常要用到转化思想.这就是把陌生的问题转化为我们熟悉的问题来求解.比如,我们可以把斜三角形和四边形问题转化为直角三角形问题来求解.例1如图1,在△ABC中,AB=5,AC=7,∠B=60°,求BC的长.解:过A点作AD⊥BC于D.在Rt△ABD中,AD=AB·sin60°=53√2,BD=AB·cos60°=52.在Rt△ADC中,DC=AC2-AD2√=72-(53√2)2…  相似文献   

13.
勾股定理是数学学习中一个非常重要的定理,它揭示了直角三角形三边之间的平方关系.解答一些证明线段平方问题时,别忘了灵活应用这个定理.例1如图,△ABC中,∠C=90°,D是AC的中点,求证:AB2+3BC2=4BD2.分析:由△ABC、△DBC都是直角三角形,得AB2=AC2+BC2,  相似文献   

14.
一、运用乘法公式例1化简x+2xy√+yx√+y√.分析:此题若分母有理化,较复杂,如运用完全平方公式先将分子分解,则非常简便.解:原式=(x√+y√)2x√+y√=x√+y√.二、运用乘法法则例2化简(3√+2√)1996·(3√-2√)1997.分析:本题逆用乘法法则中的同底数幂的乘法公式,可巧妙获解.解:原式=(3√+2√)1996·(3√-2√)1996·(3√-2√)=〔(3√+2√)·(3√-2√)〕1996·(3√-2√)=3√-2√.三、字母待定法例3化简7-48√√.分析:若化简此题,需把7-48√写成a2的形式,就可开方出来.解:设7-48√√=x√-y√,x>y>0.两边平方,得7-212√=x+y-2xy√,根据上式,得x+…  相似文献   

15.
1.证明线段成比例 例1 在△ABC中,∠BAC=90°,AD⊥C,∠ABC的平分线交AD于F,交AC于E,求证:DF:FA=AE:EC.(初中《几何》第二册总复习题18题)。 思路:如图1,由本题结论特点,可寻找第三个比:分别在△ABD和△ABC中应用三角形内角平分线定理,得DF/FA=BD/AB和AE/EC=AB/BC.如果BD/AB与AB/BC相等,问题即解决。由直角三角形比例中项定理可得AB~2=BD×BC,即BD/AB=AB/BC.  相似文献   

16.
在解梯形问题时,常常需要添作辅助线,其目的就是将梯形问题转化为同学们所熟悉的平行四边形和三角形来解决.下面举例说明梯形中常用的辅助线的作法郾一、作梯形的高例1如图1,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,MA=MB,∠BMC=75°,∠AMD=45°.求证:BC=CD郾证明作AE⊥BC于E郾∵AD∥BC,∴DC=AE郾∵∠AMB=180°-75°-45°=60°,MA=MB,∴△AMB为正三角形郾∴AB=BM郾又∵∠ABE=60°+15°=75°=∠BMC,∴Rt△ABE≌Rt△BMC郾∴AE=BC郾∴BC=CD郾二、作梯形的中位线例2如图2,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O…  相似文献   

17.
三角函数的求值问题 ,是近年中考和数学竞赛中常见的题型 ,其求法灵活多变 ,现归纳出十种 ,供同学们参考 .图 11 根据定义求例 1 如图 1,在△ ABC中 ,∠ C=90°点 D在 BC上 ,BD =4 ,AD =BC,cos∠ ADC =35 ,求sin B.分析 ∠ B是 Rt△ ABC中的一个锐角 ,欲求 sin B,根据定义 ,只需求出∠ B的对边 AC和斜边 AB即可 .解 因为在 Rt△ ACD中 ,cos∠ ADC=CDAD=35 ,设 CD =3k,所以 AD =5 k,又因为 BC =AD,所以 3k +4=5 k,所以 k= 2 ,所以 CD =3k =6 ,因为 BC =3k +4= 6 +4=10 ,AC=AD2 - CD2 =4 k= 8,所以 AB =AC2 +BC…  相似文献   

18.
一、“角平分线 +翻折”构造全等三角形以三角形的角平分线为轴翻折 ,得全等三角形。在图 1中 ,以 AD为轴将△ ACD翻折 180°,使 C落在 C′(即在 A B上截取 AC′=AC) ,得△ ACD≌△ AC′D。在图 2中 ,以 AD为轴将△ A BD翻折 180°,使 B点落在 B′(即在 AC延长线截取 AB′=AB) ,连结 DB′,得△ ABD≌△ AB′D。例 1.已知△ ABC中 (如图 3) ,∠ C=90°,AC=BC,AD平分∠ BAC交 BC于 D。求证 :AB=AC+CD。分析 :由于题目中有角平分线条件 ,故可考虑翻折造全等 ,即把△ ACD以 AD为轴翻折 180°,使 C点落在 G 上 ,则有…  相似文献   

19.
证明勾股定理,历来有很多方法.最近,我发现用三角形相似知识也能证明. 已知:Rt△ACB中,∠C=90°,求证:AB2=AC2+BC2. 证明如图,在AB及其延长线上分别取两点D、E,使BE=BD=  相似文献   

20.
在1993年西宁市中考数学试卷中,有这样一道题:已知在如图Rt△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC。若AB=15cm,BD=9cm。求:(1)BC的长;(2)AC的长;(3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号