首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aresearch team led by Prof. QIN Jianhua and LIN Bingcheng from the CAS Dalian Institute of Chemical Physics has made remarkable progress in fluidic chip development.
Recently they have published three papers in the Lab on a Chip, a journal run by the British Royal Society of Chemistry. Among them, the paper entitled “Cell-based High Content Screening Using Microfluidic Device,”  相似文献   

2.
Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X–4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.  相似文献   

3.
We analyze a recently introduced approach for the sorting of aqueous drops with biological content immersed in oil, using a microfluidic chip that combines the functionality of electrowetting with the high throughput of two-phase flow microfluidics. In this electrostatic sorter, three co-planar electrodes covered by a thin dielectric layer are placed directly below the fluidic channel. Switching the potential of the central electrode creates an electrical guide that leads the drop to the desired outlet. The generated force, which deflects the drop, can be tuned via the voltage. The working principle is based on a contrast in conductivity between the drop and the continuous phase, which ensures successful operation even for drops of highly conductive biological media like phosphate buffered saline. Moreover, since the electric field does not penetrate the drop, its content is protected from electrical currents and Joule heating. A simple capacitive model allows quantitative prediction of the electrostatic forces exerted on drops. The maximum achievable sorting rate is determined by a competition between electrostatic and hydrodynamic forces. Sorting speeds up to 1200 per second are demonstrated for conductive drops of 160 pl in low viscosity oil.  相似文献   

4.
This paper presents a convenient strategy to modify the surface of whole-Teflon microfluidic chips by coating the channel walls with a thin layer of polydopamine (PDA) film, which is formed by oxidation-induced self-polymerization of dopamine in alkaline solution. Two coating strategies, static incubation and dynamic flow, are demonstrated and used for tuning the physical and chemical properties of the coated channel walls. The functionalized surfaces were investigated with the contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy measurements. The coating time was optimized according to the fluorescent intensity of the green fluorescent protein immobilized on the modified surface. Applications of the PDA-modified Teflon microchips in bioanalysis were demonstrated with a typical sandwich immunoassay. Moreover, long-term cell culture experiments on modified and native Teflon chips revealed that the chip biocompatibility can be greatly improved with PDA coating. The results indicate that the surface properties of the Teflon can be easily controlled by the PDA modification, thus greatly expanding the application scope of whole-Teflon chips for various chemical and biological research fields.  相似文献   

5.
Polyelectrolyte multilayers (PEMs) based on the combinations poly(diallyldimethylammonium chloride)∕poly(acrylic acid) (PDADMAC∕PAA) and poly(allylamine hydrochloride)∕PAA (PAH∕PAA) were adsorbed on poly(dimethylsiloxane) (PDMS) and tested for nonspecific surface attachment of hydrophobic yeast cells using a parallel plate flow chamber. A custom-made graft copolymer containing poly(ethylene glycol) (PEG) side chains (PAA-g-PEG) was additionally adsorbed on the PEMs as a terminal layer. A suitable PEM modification effectively decreased the adhesion strength of Saccharomyces cerevisiae DSM 2155 to the channel walls. However, a further decrease in initial cell attachment and adhesion strength was observed after adsorption of PAA-g-PEG copolymer onto PEMs from aqueous solution. The results demonstrate that a facile layer-by-layer surface functionalization from aqueous solutions can be successfully applied to reduce cell adhesion strength of S. cerevisiae by at least two orders of magnitude compared to bare PDMS. Therefore, this method is potentially suitable to promote planktonic growth inside capped PDMS-based microfluidic devices if the PEM deposition is completed by a dynamic flow-through process.  相似文献   

6.
Various single-cell retention structures (SCRSs) were reported for analysis of single cells within microfluidic devices. Undesirable flow behaviors within micro-environments not only influence single-cell manipulation and retention significantly but also lead to cell damage, biochemical heterogeneity among different individual cells (e.g., different cell signaling pathways induced by shear stress). However, the fundamentals in flow behaviors for single-cell manipulation and shear stress reduction, especially comparison of these behaviors in different microstructures, were not fully investigated in previous reports. Herein, flow distribution and induced shear stress in two different single-cell retention structures (SCRS I and SCRS II) were investigated in detail to study their effects on single-cell trapping using computational fluid dynamics (CFD) methods. The results were successfully verified by experimental results. Comparison between these two SCRS shows that the wasp-waisted configuration of SCRS II has a better performance in trapping and manipulating long cylinder-shaped cardiac myocytes and provides a safer “harbor” for fragile cells to prevent cell damage due to the shear stress induced from strong flows. The simulation results have not only explained flow phenomena observed in experiments but also predict new flow phenomena, providing guidelines for new chip design and optimization, and a better understanding of the cell micro-environment and fundamentals of microfluidic flows in single-cell manipulation and analysis.  相似文献   

7.
In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells.  相似文献   

8.
Cancer heterogeneity has received considerable attention for its role in tumor initiation and progression, and its implication for diagnostics and therapeutics in the clinic. To facilitate a cellular heterogeneity study in a low cost and highly efficient manner, we present a microfluidic platform that allows traceable clonal culture and characterization. The platform captures single cells into a microwell array and cultures them for clonal expansion, subsequently allowing on-chip characterization of clonal phenotype and response against drug treatments. Using a heterogeneous prostate cancer model, the PC3 cell line, we verified our prototype, identifying three different sub-phenotypes and correlating their clonal drug responsiveness to cell phenotype.  相似文献   

9.
With the soaring advances in computational speed, thermal management becomes a major concern in computer systems. To remove heat generated by computer chips or very large scale integrated circuits, a research team headed by Prof. LIU Jing with the CAS Technical Institute of Physics and Chemistry in Beijing has developed a novel liquid metal cooling system that can be powered by the very heat produced by computer chips.  相似文献   

10.
A rapid, inexpensive method using alkoxysilanes has been developed to selectively coat the interior of polydimethylsiloxane (PDMS) microfluidic channels with an integral silicaceous layer. This method combines the rapid prototyping capabilities of PDMS with the desirable wetting and electroosmotic properties of glass. The procedure can be carried out on the open faces of PDMS blocks prior to enclosure of the channels, or by flowing the reagents through the preformed channels. Therefore, this methodology allows for high-throughput processing of entire microfluidic devices or selective modification of specific areas of a device. Modification of PDMS with tetraethoxysilane generated a stable surface layer, with enhanced wettability and a more stable electroosmotic flow rate than native PDMS. Modification of PDMS with 3-aminopropyltriethoxysilane generated a surface layer bearing amine functionalities allowing for further chemical derivatization of the PDMS surface.  相似文献   

11.
An acoustophoresis-based microfluidic flow-chip is presented as a novel platform to facilitate analysis of proteins and peptides loosely bound to the surface of beads or cells. The chip allows for direct removal of the background surrounding the beads or cells, followed by sequential treatment and collection of a sequence of up to five different buffer conditions. During this treatment, the beads/cells are retained in a single flow by acoustic radiation force. Eluted peptides are collected from the outlets and subsequently purified by miniaturized solid-phase extraction and analyzed with matrix assisted laser desorption mass spectrometry. Fundamental parameters such as the system fluidics and dispersion are presented. The device was successfully applied for wash and sequential elution of peptides bound to the surface of microbeads and human spermatozoa, respectively.  相似文献   

12.
The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young''s modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells'' extension ratio, the Young''s moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.  相似文献   

13.
The present work demonstrates the use of a dielectrophoretic lab-on-a-chip device in effectively separating different cancer cells of epithelial origin for application in circulating tumor cell (CTC) identification. This study uses dielectrophoresis (DEP) to distinguish and separate MCF-7 human breast cancer cells from HCT-116 colorectal cancer cells. The DEP responses for each cell type were measured against AC electrical frequency changes in solutions of varying conductivities. Increasing the conductivity of the suspension directly correlated with an increasing frequency value for the first cross-over (no DEP force) point in the DEP spectra. Differences in the cross-over frequency for each cell type were leveraged to determine a frequency at which the two types of cell could be separated through DEP forces. Under a particular medium conductivity, different types of cells could have different DEP behaviors in a very narrow AC frequency band, demonstrating a high specificity of DEP. Using a microfluidic DEP sorter with optically transparent electrodes, MCF-7 and HCT-116 cells were successfully separated from each other under a 3.2 MHz frequency in a 0.1X PBS solution. Further experiments were conducted to characterize the separation efficiency (enrichment factor) by changing experimental parameters (AC frequency, voltage, and flow rate). This work has shown the high specificity of the described DEP cell sorter for distinguishing cells with similar characteristics for potential diagnostic applications through CTC enrichment.  相似文献   

14.
The demand to understand the mechanical properties of cells from biomedical, bioengineering, and clinical diagnostic fields has given rise to a variety of research studies. In this context, how to use lab-on-a-chip devices to achieve accurate, high-throughput, and non-invasive acquisition of the mechanical properties of cells has become the focus of many studies. Accordingly, we present a comprehensive review of the development of the measurement of mechanical properties of cells using passive microfluidic mechanisms, including constriction channel-based, fluid-induced, and micropipette aspiration-based mechanisms. This review discusses how these mechanisms work to determine the mechanical properties of the cell as well as their advantages and disadvantages. A detailed discussion is also presented on a series of typical applications of these three mechanisms to measure the mechanical properties of cells. At the end of this article, the current challenges and future prospects of these mechanisms are demonstrated, which will help guide researchers who are interested to get into this area of research. Our conclusion is that these passive microfluidic mechanisms will offer more preferences for the development of lab-on-a-chip technologies and hold great potential for advancing biomedical and bioengineering research studies.  相似文献   

15.
Despite being invasive within surrounding brain tissues and the central nervous system, little is known about the mechanical properties of brain tumor cells in comparison with benign cells. Here, we present the first measurements of the peak pressure drop due to the passage of benign and cancerous brain cells through confined microchannels in a “microfluidic cell squeezer” device, as well as the elongation, speed, and entry time of the cells in confined channels. We find that cancerous and benign brain cells cannot be differentiated based on speeds or elongation. We have found that the entry time into a narrow constriction is a more sensitive indicator of the differences between malignant and healthy glial cells than pressure drops. Importantly, we also find that brain tumor cells take a longer time to squeeze through a constriction and migrate more slowly than benign cells in two dimensional wound healing assays. Based on these observations, we arrive at the surprising conclusion that the prevailing notion of extraneural cancer cells being more mechanically compliant than benign cells may not apply to brain cancer cells.  相似文献   

16.
Nam J  Lim H  Kim C  Yoon Kang J  Shin S 《Biomicrofluidics》2012,6(2):24120-2412010
This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.  相似文献   

17.
Tsai CH  Lin CH  Fu LM  Chen HC 《Biomicrofluidics》2012,6(2):24108-241089
A high-performance microfluidic rectifier incorporating a microchannel and a sudden expansion channel is proposed. In the proposed device, a block structure embedded within the expansion channel is used to induce two vortex structures at the end of the microchannel under reverse flow conditions. The vortices reduce the hydraulic diameter of the microchannel and, therefore, increase the flow resistance. The rectification performance of the proposed device is evaluated by both experimentally and numerically. The experimental and numerical values of the rectification performance index (i.e., the diodicity, Di) are found to be 1.54 and 1.76, respectively. Significantly, flow rectification is achieved without the need for moving parts. Thus, the proposed device is ideally suited to the high pressure environment characteristic of most micro-electro-mechanical-systems (MEMS)-based devices. Moreover, the rectification performance of the proposed device is superior to that of existing valveless rectifiers based on Tesla valves, simple nozzle/diffuser structures, or cascaded nozzle/diffuser structures.  相似文献   

18.
Liu Z  Xiao L  Xu B  Zhang Y  Mak AF  Li Y  Man WY  Yang M 《Biomicrofluidics》2012,6(2):24111-2411112
Precisely controlling the spatial distribution of biomolecules on biomaterial surface is important for directing cellular activities in the controlled cell microenvironment. This paper describes a polydimethylsiloxane (PDMS) gradient-generating microfluidic device to immobilize the gradient of cellular adhesive Arg-Gly-Asp (RGD) peptide on poly (ethylene glycol) (PEG) hydrogel. Hydrogels are formed by exposing the mixture of PEG diacrylate (PEGDA), acryloyl-PEG-RGD, and photo-initiator with ultraviolet light. The microfluidic chip was simulated by a fluid dynamic model for the biomolecule diffusion process and gradient generation. PEG hydrogel covalently immobilized with RGD peptide gradient was fabricated in this microfluidic device by photo-polymerization. Bone marrow derived rat mesenchymal stem cells (MSCs) were then cultured on the surface of RGD gradient PEG hydrogel. Cell adhesion of rat MSCs on PEG hydrogel with various RGD gradients were then qualitatively and quantitatively analyzed by immunostaining method. MSCs cultured on PEG hydrogel surface with RGD gradient showed a grated fashion for cell adhesion and spreading that was proportional to RGD concentration. It was also found that 0.107–0.143 mM was the critical RGD concentration range for MSCs maximum adhesion on PEG hydrogel.  相似文献   

19.
Wu CC  Tseng PK  Tsai CH  Liu YL 《Biomicrofluidics》2012,6(2):24124-2412418
Microorganisms, molecules, or viruses in the fluidic environment are usually at considerably low Reynolds numbers because of small diameters. The viscous forces of molecules and viruses dominate at considerably low Reynolds numbers. This study developed three microfluidic devices, that is, T type, U type, and W type devices, to control the flow movement, which can increase the adhesion density of viruses on the surface of the sensor. The linker 11-mercaptoundecanoic acid (11-MUA) and Turnip yellow mosaic virus (TYMV) were used in this study and measured by a confocal microscope. Fluorescent intensity and coverage of 11-MUA and TYMV were used to identify the adhesion density quantitatively. Results indicate that 11-MUA layers and TYMV disperse randomly by the dipping method. Attachment tests for T-, U-, and W-type devices demonstrated average fluorescence intensities of 1.56, 2.18, and 2.67, respectively, and average fluorescence coverage of 1.31, 1.87, and 2.55 times those of dipping techniques, respectively. The T-type device produced the lowest fluorescence coverage uniformity (10%-80%), whereas the W-type device produced the highest fluorescence coverage uniformity (80%-90%). Fluorescence intensity correlates positively with flow within a specified flow range; however, the exact relationship between fluorescence intensity and flow requires further study. Attachment tests for TYMV virus samples indicated that the W-type device produced an average fluorescence intensity of 3.59 and average fluorescence coverage of 19.13 times greater than those achieved through dipping techniques. Traditional immersion methods achieved fluorescence coverage of 0%-10%, whereas that of the W-type device reached 70%-90%.  相似文献   

20.
Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer—breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage—were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号