首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

2.
贵刊文 [1 ]中给出了定理 1 在△ABC中 ,AD、BE相交于F ,若 AEEC=m ,CDDB=n ,则 S△ABFS△ABC=mmn +m +1 。此定理应用较广泛 ,但在证明过程中应用了中学教材中未介绍的梅涅劳斯定理 ,不适合向广大中学生讲授。本文给出一个易被中学生接受的浅显证明 ,并说明其在证明文 [2 ]定理中的应用 ,供参考。 (文 [1 ]中的证明请见文 [1 ],这里略。)证明 如图 1 ,作EH∥BC交AD于点H ,则EHCD =AEAC=AEAE +EC ①BFFE=BDEH=BDDC·DCEH ②图 1∴ BFFE =1n ·1 +mm =1 +mmn ,∴S△ABF ∶S△ABE =1 +m1 +m +mn。又∵S△ABE…  相似文献   

3.
1.如图1所示,点O是△ABC内的任意一点,作直线AO,BO,CO与边BC,CA,AB,分别交于点D,E,F则BD/DC·CE/AE·AF/BF=1.证明:过A点作AN∥BE,AM∥CF分别交BC的延长线  相似文献   

4.
问题解答     
2008年第9期问题解答187.如图,D为△ABC的边BC的中点,过AD的中点N作与BC不平行的直线l,分别交边AB、AC于点M、P.求证:ABAM AACP=4.证明:如图,过点B、C分别作AD的平行线交l于点E、F,则BMAM=ABEN,ACPP=ACNF.两式相加,得BMAM ACPP=BEA NC F.因为BE∥AD∥CF,D为BC的中点,所以BE CF=  相似文献   

5.
初中平面几何第一册中的平行线分线段成比例定理是研究相似形的最重要、最基本的定理。教材中对定理进行了描述性的证明,其过程比较复杂,学生难以接受,是教学中的一个突出的难点。下面给出一个比较简单且为学生所能接受的证明。已知:直线l_2∥l_2∥l_3(如图) 且分别截直线a和b于点A、B、C和D、E,F 求证:AB/BC=DE/EF 证明:如图作DH∥AC分别交l_2,l_3于G.H. 则△GEH和△GEF是等底等高三角形∴S△_(GHE)=△S△_(GEF), 又△DGE和△GEH;△DGE和△GEF都  相似文献   

6.
<正>引例(教材第12页习题1.4第1题)已知:如图1,△ABC是等边三角形,DE∥BC,分别交AB和AC于点D,E.求证:△ADE是等边三角形.(证明略)对此题进行变式,可以得到一系列数学问题.变式1:将△ADE放到△ABC的外部,探究相等线段.例1如图2,△ABC,△ADE是等边三角形.求证:BD=CE.  相似文献   

7.
三角形面积公式S△=21ah是同学们熟知的,由于同学们对它理解不深,觉得它的用处不大.如果在理解它的基础上,将它的一些性质与平面几何的有关知识“串联”起来解决几何问题,就显得简捷巧妙,省时省力.举例应用如下:例1已知,如图1,在△ABC中,DE∥BC,AF为BC边上的中线,且交DE于G.求证:DG=EG.图1分析点F为中点,易知S△ABF=S△ACF,DE∥BC,连结DF,EF,则S△ADF=S△AEF,联想到作高.证明连结DF,EF,分别过D,E作DN⊥AF,EM⊥AF.因为AF为BC上的中点,所以S△AFB=S△AFC.因为DE∥BC,所以S△DFB=S△EFC.所以S△AFD=S△AFE…  相似文献   

8.
定理1 △ABC中,AD是中线,F为AD上任一点、BF交AC于E,若AE(?)EC=m,则AF:FD=2m.证 过D作DG∥BE交AC于G(如图),则AF:FD=AE:EG.∵ D为BC中点,∴AF/FD=AE/((1/2)EC),即AF:FD=2m.定理2 △ABC中,D为BC上一点,E为AC上的一点,AD、BE交于点F,若AE:EC=m,CD:DB=n,则AF:FD=m(1 n).证明 过D作DG∥BE交AC于G(如图),则  相似文献   

9.
<正>一、问题呈现题目如图1所示,在△ABC中,AB=6,AC=3,∠BAC=120°,∠BAC的平分线交BC于点D,求AD的长.二、解法新探及思考解法1如图1,过点D作DE∥AB交AC于点E,则∠EDA=∠BAD.∵AD平分∠BAC,∠BAC=120°,∴∠EAD=∠BAD=∠EDA=60°,故△ADE是正三角形,DE=EA=AD.由DE∥AB,  相似文献   

10.
文[1]给出了两个定理,如下:定理1如图1,点P是△ABC内任意一点,连接AP并延长交BC于点Q,过点P作直线EF与AB、AC两边分别交于E、  相似文献   

11.
题目:设P、Q为线段BC上两定点,且BP=CQA为BC外一动点(如图(1))当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论。猜想:△ABC是等腰三角形。 [证法一]:(利用平移法和四点共圆) 分别作QD∥AB、CD∥AP、QD、CD交于点D,  相似文献   

12.
<正>在直角坐标系中,△ABC的顶点A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),过点A作l∥y轴,交BC所在直线于点D,设D(x_D,y_D),则S_(△ABC)=1/2|y_A-y_D|·|x_C-x_B|.下面我们来证明这个公式.当△ABC位置如图1时,过C作CF⊥l,过B作BE⊥l,垂足分别为F,E,所以x_D=x_E=x_F,有AD=y_A-y_D,CF=x_C-x_D,BE=x_D-x_B,所以S_(△ABC)=S_(△ABD)+  相似文献   

13.
文[1]证明了三角形垂心的一个性质:定理0若△ABC的垂心为H,且D、E、F分别为H在BC、CA、AB边所在直线上的射影,H1、H2、H3分别为△AEF、△BFD、△CDE的垂心,则△DEF≌△H1H2H3.本文将这一关于垂心的性质推广至平面上任一点,证明垂足三角形的一个性质.过△ABC所在平面上任一点P,作边BC、CA、AB边所在直线的垂线,垂足分别为D、E、F,则△DEF叫做△ABC关于点P的垂足三角形.定理1设△ABC关于任一点P的垂足三角形为△DEF,H1、H2、H3分别为△AEF、△BFD、△CDE的垂心,证则明△DEF≌△H1H2H3.如图1,依题设知FH2∥PD…  相似文献   

14.
题目如图1,设D是△ABC的边AB上的一点,作DE//BC交AC于点E,作DF∥AC交BC于点F,已知△ADE、△DBF的面积分别为m和n,求四边形DECF的面积.  相似文献   

15.
题目在△ABC中,∠ACB=90°,以B为圆心、BC为半径作圆,点D在边AC上,直线DE切⊙B于点E,过点C垂直于AB的直线与BE交于点F,AF与DE交于点G,作AH//BG与DE交于点H.证明:GE=GH.(2010,中国西部数学奥林匹克)证明如图1,设⊙B的半径为R,AB与DE交于点I.  相似文献   

16.
题目:(第二届初中祖冲之杯数学竞赛题) 如图1,已知△ABC的面积S,作一条直线l,使l∥BC,且与AB、AC分别交于D、E两点.记△BED的面积为K,试证明:K≤S/4.  相似文献   

17.
类型一 :平行线型这种基本图形有两种形式 :( 1) A形基本图形。如图一所示 ,它是由平行线截三角形的两边构成的 ,由 DE∥ BC,推出△ ADE∽△ ABC。   ( 2 ) X型基本图形。如图二所示 ,将图一中DE平行移动 ,与 BA、CA的延长线相交就可得到这类基本图形 ,由ED∥ BC,推出△ ADE∽△ ABC。例 1 如图三所示 ,直线 FD和△ ABC的边BC交于 D,交 AC于 E,与 BA的延长线交于 F,且 BD=DC。求证 :AEEC=FAFB。分析 :由于 AEEC与 FAFB涉及的四条线段构不成基本图形 ,因而必须寻找中间比将它们联系起来。图中没有 A型和 X型基…  相似文献   

18.
命题 1 设 I是△ ABC的内心 ,并设△ ABC的内切圆与三边 BC,CA,AB分别相切于点K,L,M.过点 B平行于 MK的直线分别交直线 L M及 L K于点 R和 S.证明 :∠ RIS是锐角 .(图 1)这是第 39届IMO试题的第 5题 [1 ] .事实上 ,该命题若将“内切圆”改为“旁切圆”,结论仍然成立 .命题 2 设 I是△ABC的旁心 ,旁切圆与直线 BC,CA,AB分别相切于点K,L ,M.过点 B平行于 MK的直线分别交直线 L M,L K于点 R,S.则∠RIS是锐角 .证明 如图2 ,连结 BI,MI.∵SR∥MK,∴∠BSK =∠ MKL .∵ BM切⊙I于 M.∴∠ RMB =∠MKL.从而知∠B…  相似文献   

19.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

20.
题目已知:如图1,AM是△ABC中BC边上的中线,P是AM上任意一点,过点P作DE∥BC,交AB、AC分别于D、E. 求证:PD=PE. 证明:∵DE∥BC, ∴(PD)/(BM)=(AP)/(AM),(PE)/(MC)=(AP)/(AM),∴ (PD)/(BM)=(PE)/(MC), ∵BM=MC,∴PD=PE. 变式一已知:如图2,AM是△ABC中BC边上的中线,P是AM上  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号